false
false

Contract Address Details

0xd88c8e0ae21bea6ade41a41130bb4cd43e6b1723

Contract Name
Forwarder
Creator
0x7c94e0–6f9dc7 at 0x87e3bc–8206ac
Balance
0 Xai ( )
Tokens
Fetching tokens...
Transactions
0 Transactions
Transfers
0 Transfers
Gas Used
Fetching gas used...
Last Balance Update
59799149
Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
Contract name:
Forwarder




Optimization enabled
true
Compiler version
v0.8.24+commit.e11b9ed9




Optimization runs
100
EVM Version
paris




Verified at
2024-07-31T16:00:23.540832Z

contracts/xai-subsidy/Forwarder.sol

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.22;

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

contract Forwarder is Initializable {
	using ECDSA for bytes32;
	bytes32 public DOMAIN_SEPARATOR;
	bytes32 public constant FORWARD_REQUEST_TYPEHASH =
		keccak256("ForwardRequest(address from,address to,uint256 value,uint256 gas,uint256 nonce,bytes data)");

	// Mapping to store nonces for each sender
	mapping(address => uint256) public nonces;

	struct ForwardRequest {
		address from; // an externally owned account making the request
		address to; // destination address, in this case the Receiver Contract
		uint256 value; // ETH Amount to transfer to destination
		uint256 gas; // gas limit for execution
		uint256 nonce; // the users nonce for this request
		bytes data; // the data to be sent to the destination
	}

	function initialize() public initializer {
		uint256 chainId;
		assembly {
			chainId := chainid()
		}
		DOMAIN_SEPARATOR = keccak256(
			abi.encode(
				keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
				keccak256(bytes("Forwarder")), // Name of the contract
				keccak256(bytes("1")), // Version
				chainId, // Chain ID
				address(this) // Address of the contract
			)
		);
	}

	function verify(ForwardRequest calldata request, bytes calldata signature) public view returns (bool) {
		bytes32 messageHash = keccak256(
			abi.encodePacked(
				"\x19\x01",
				DOMAIN_SEPARATOR,
				keccak256(
					abi.encode(
						FORWARD_REQUEST_TYPEHASH,
						request.from,
						request.to,
						request.value,
						request.gas,
						nonces[request.from],
						keccak256(request.data)
					)
				)
			)
		);

		(address recovered, ECDSA.RecoverError err) = messageHash.tryRecover(signature);

		if (err == ECDSA.RecoverError.NoError) {
			return recovered == request.from;
		}

		return false;
	}

	function execute(
		ForwardRequest calldata request,
		bytes calldata signature
	) public payable returns (bool, bytes memory) {
		require(msg.value == request.value, "Invalid value");
		require(verify(request, signature), "Invalid signature");

		nonces[request.from]++;

		(bool success, bytes memory returndata) = request.to.call{gas: request.gas, value: request.value}(
			abi.encodePacked(request.data, request.from)
		);

		if (gasleft() <= request.gas / 63) {
			// We explicitly trigger invalid opcode to consume all gas and bubble-up the effects, since
			// neither revert or assert consume all gas since Solidity 0.8.0
			// https://docs.soliditylang.org/en/v0.8.0/control-structures.html#panic-via-assert-and-error-via-require
			assembly {
				invalid()
			}
		}

		require(success, "Functioncall failed");

		return (success, returndata);
	}
}
        

@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}
          

@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
          

@openzeppelin/contracts/utils/Strings.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
          

@openzeppelin/contracts/utils/cryptography/ECDSA.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}
          

@openzeppelin/contracts/utils/math/Math.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
          

@openzeppelin/contracts/utils/math/SignedMath.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
          

Compiler Settings

{"viaIR":true,"outputSelection":{"*":{"*":["abi","evm.bytecode","evm.deployedBytecode","evm.methodIdentifiers"]}},"optimizer":{"runs":100,"enabled":true,"details":{"yulDetails":{"optimizerSteps":"u"}}},"libraries":{},"evmVersion":"paris"}
              

Contract ABI

[{"type":"event","name":"Initialized","inputs":[{"type":"uint8","name":"version","internalType":"uint8","indexed":false}],"anonymous":false},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"DOMAIN_SEPARATOR","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"FORWARD_REQUEST_TYPEHASH","inputs":[]},{"type":"function","stateMutability":"payable","outputs":[{"type":"bool","name":"","internalType":"bool"},{"type":"bytes","name":"","internalType":"bytes"}],"name":"execute","inputs":[{"type":"tuple","name":"request","internalType":"struct Forwarder.ForwardRequest","components":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"value","internalType":"uint256"},{"type":"uint256","name":"gas","internalType":"uint256"},{"type":"uint256","name":"nonce","internalType":"uint256"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"bytes","name":"signature","internalType":"bytes"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"initialize","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"nonces","inputs":[{"type":"address","name":"","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"verify","inputs":[{"type":"tuple","name":"request","internalType":"struct Forwarder.ForwardRequest","components":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"value","internalType":"uint256"},{"type":"uint256","name":"gas","internalType":"uint256"},{"type":"uint256","name":"nonce","internalType":"uint256"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"bytes","name":"signature","internalType":"bytes"}]}]
              

Contract Creation Code

0x60806040523461001a57604051610e2c6100208239610e2c90f35b600080fdfe6080604052600436101561001257600080fd5b60003560e01c80633644e5151461007257806347153f821461006d5780637ecebe00146100685780638129fc1c14610063578063956309681461005e5763bf5d3bdb0361008257610312565b6102f7565b6102b6565b61029b565b6101e1565b6100b2565b600091031261008257565b600080fd5b610092916008021c81565b90565b906100929154610087565b61009260006001610095565b9052565b565b34610082576100c2366004610077565b6100dd6100cd6100a0565b6040519182918290815260200190565b0390f35b908160c09103126100825790565b909182601f830112156100825781359167ffffffffffffffff831161008257602001926001830284011161008257565b91909160408184031261008257803567ffffffffffffffff811161008257836101499183016100e1565b92602082013567ffffffffffffffff81116100825761016892016100ef565b9091565b60005b83811061017f5750506000910152565b818101518382015260200161016f565b6101b06101b96020936101c3936101a4815190565b80835293849260200190565b9586910161016c565b601f01601f191690565b0190565b90151581526040602082018190526100929291019061018f565b6101f56101ef36600461011f565b9161060c565b906100dd61020260405190565b928392836101c7565b6001600160a01b031690565b6102208161020b565b0361008257565b905035906100b082610217565b906020828203126100825761009291610227565b6100929061020b906001600160a01b031682565b61009290610248565b6100929061025c565b9061027890610265565b600052602052604060002090565b600061029661009292600261026e565b610095565b34610082576100dd6100cd6102b1366004610234565b610286565b34610082576102c6366004610077565b6102ce610a81565b604051005b7fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e4890565b3461008257610307366004610077565b6100dd6100cd6102d3565b34610082576100dd61032e61032836600461011f565b91610b51565b60405191829182901515815260200190565b80610220565b3561009281610340565b6020808252600d908201526c496e76616c69642076616c756560981b604082015260600190565b1561037e57565b60405162461bcd60e51b81528061039760048201610350565b0390fd5b602080825260119082015270496e76616c6964207369676e617475726560781b604082015260600190565b156103cd57565b60405162461bcd60e51b8152806103976004820161039b565b3561009281610217565b6100929081565b61009290546103f0565b634e487b7160e01b600052601160045260246000fd5b60001981146104265760010190565b610401565b90600019905b9181191691161790565b6100926100926100929290565b9061045861009261045f9261043b565b825461042b565b9055565b903590601e193682900301821215610082570180359067ffffffffffffffff8211610082576020019136829003831361008257565b90826000939282370152565b90916101c39083908093610498565b60601b90565b610092906104b3565b6104ce6100ac9161020b565b6104b9565b6104e490601494936101c3936104a4565b80926104c2565b634e487b7160e01b600052604160045260246000fd5b90601f01601f1916810190811067ffffffffffffffff82111761052357604052565b6104eb565b906100b061053560405190565b9283610501565b67ffffffffffffffff811161052357602090601f01601f19160190565b9061056b6105668361053c565b610528565b918252565b3d1561058a5761057f3d610559565b903d6000602084013e565b606090565b634e487b7160e01b600052601260045260246000fd5b906105af565b9190565b9081156105ba570490565b61058f565b602080825260139082015272119d5b98dd1a5bdb98d85b1b0819985a5b1959606a1b604082015260600190565b156105f357565b60405162461bcd60e51b815280610397600482016105bf565b92916000916106486106438493610621600090565b50604088019361063d61063661009287610346565b3414610377565b88610b51565b6103c6565b81850161067861066161065a836103e6565b600261026e565b61067261066d826103f7565b610417565b90610448565b610684602087016103e6565b9560608101966106b86106df6106b06106a561069f8c610346565b97610346565b9460a0810190610463565b9290956103e6565b916106d36106c560405190565b9384926020840198896104d3565b86810382520382610501565b5193f16106ea610570565b9261070e6105ab6100926106fe5a94610346565b610708603f61043b565b906105a5565b111561071d576105ab816105ec565bfe5b6100929060081c5b60ff1690565b610092905461071f565b61009290610727565b6100929054610737565b6107276100926100929290565b6020808252602e908201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160408201526d191e481a5b9a5d1a585b1a5e995960921b606082015260800190565b156107ac57565b60405162461bcd60e51b81528061039760048201610757565b9060ff90610431565b6107276100926100929260ff1690565b906107ee61009261045f926107ce565b82546107c5565b9061ff009060081b610431565b151590565b9061081761009261045f92610802565b82546107f5565b6100ac9061074a565b6020810192916100b0919061081e565b610848610844600061072d565b1590565b8080610923575b80156108de575b61085f906107a5565b8061087461086d600161074a565b60006107de565b6108cd575b6108816109e5565b61088757565b610892600080610807565b7f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024986108bc60405190565b806108c8600182610827565b0390a1565b6108d960016000610807565b610879565b506108f36108446108ee30610265565b610c9a565b8015610856575061085f6109076000610740565b61091b610914600161074a565b9160ff1690565b149050610856565b5061092e6000610740565b61093b610914600161074a565b1061084f565b61094b6009610559565b682337b93bb0b93232b960b91b602082015290565b610092610941565b6109726001610559565b603160f81b602082015290565b610092610968565b6100ac9061020b565b909594926100b0946109c26109c9926109bb6080966109b460a088019c6000890152565b6020870152565b6040850152565b6060830152565b0190610987565b906104586109e061045f92610092565b610092565b6100b06109f0610960565b610a026109fb825190565b9160200190565b20610a6e610a0e61097f565b610a196109fb825190565b2091610a2430610265565b92610a62610a3160405190565b948593602085019346917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f86610990565b90810382520382610501565b610a796109fb825190565b2060016109d0565b6100b0610837565b90929192610a996105668261053c565b9381855281830111610082576100b0916020850190610498565b610092913691610a89565b90815260e08101979695909490939092909160208601610add91610987565b60408501610aea91610987565b6060840152608083015260a082015260c00152565b6020809392610b1c61056b6101c39461190160f01b815260020190565b01918252565b634e487b7160e01b600052602160045260246000fd5b60051115610b4257565b610b22565b906100b082610b38565b9190610c51610c5792610b62600090565b50610a62610c3f610b7360016103f7565b87610c1b817fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e48610a62610bb16020610baa856103e6565b94016103e6565b948d610bbf60408201610346565b91610bf7610bf1610be6610be161065a610bdb60608801610346565b956103e6565b6103f7565b9360a0810190610463565b90610ab3565b610c026109fb825190565b2092610c0d60405190565b988997602089019788610abe565b610c266109fb825190565b2090610c3160405190565b938492602084019283610aff565b610c4a6109fb825190565b2092610ab3565b90610cc2565b610c6d610c676000949394610b47565b91610b47565b14610c79575050600090565b610c90610c8b6000610c9693016103e6565b61020b565b9161020b565b1490565b3b610ca86105ab600061043b565b1190565b61020b6100926100929290565b61009290610cac565b908051610cd26105ab604161043b565b03610cf457610168916020820151906060604084015193015160001a90610d4f565b5050610d006000610cb9565b90600290565b6100929061043b565b610d3f6100b094610d38606094989795610d2e608086019a6000870152565b60ff166020850152565b6040830152565b0152565b6040513d6000823e3d90fd5b919291610d5b83610d06565b610d7d6105ab6fa2a8918ca85bafe22016d0b997e4df60600160ff1b0361043b565b11610de257610d9d600093602095610d9460405190565b94859485610d0f565b838052039060015afa15610ddd57600051610db86000610cb9565b610dc18161020b565b610dca8361020b565b14610dd6575090600090565b9160019150565b610d43565b50505050610df06000610cb9565b9060039056fea264697066735822122026eaa5afe824c41e3c871d14cc70209049f891f5c3dfafabfa6792c058934de564736f6c63430008180033

Deployed ByteCode

0x6080604052600436101561001257600080fd5b60003560e01c80633644e5151461007257806347153f821461006d5780637ecebe00146100685780638129fc1c14610063578063956309681461005e5763bf5d3bdb0361008257610312565b6102f7565b6102b6565b61029b565b6101e1565b6100b2565b600091031261008257565b600080fd5b610092916008021c81565b90565b906100929154610087565b61009260006001610095565b9052565b565b34610082576100c2366004610077565b6100dd6100cd6100a0565b6040519182918290815260200190565b0390f35b908160c09103126100825790565b909182601f830112156100825781359167ffffffffffffffff831161008257602001926001830284011161008257565b91909160408184031261008257803567ffffffffffffffff811161008257836101499183016100e1565b92602082013567ffffffffffffffff81116100825761016892016100ef565b9091565b60005b83811061017f5750506000910152565b818101518382015260200161016f565b6101b06101b96020936101c3936101a4815190565b80835293849260200190565b9586910161016c565b601f01601f191690565b0190565b90151581526040602082018190526100929291019061018f565b6101f56101ef36600461011f565b9161060c565b906100dd61020260405190565b928392836101c7565b6001600160a01b031690565b6102208161020b565b0361008257565b905035906100b082610217565b906020828203126100825761009291610227565b6100929061020b906001600160a01b031682565b61009290610248565b6100929061025c565b9061027890610265565b600052602052604060002090565b600061029661009292600261026e565b610095565b34610082576100dd6100cd6102b1366004610234565b610286565b34610082576102c6366004610077565b6102ce610a81565b604051005b7fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e4890565b3461008257610307366004610077565b6100dd6100cd6102d3565b34610082576100dd61032e61032836600461011f565b91610b51565b60405191829182901515815260200190565b80610220565b3561009281610340565b6020808252600d908201526c496e76616c69642076616c756560981b604082015260600190565b1561037e57565b60405162461bcd60e51b81528061039760048201610350565b0390fd5b602080825260119082015270496e76616c6964207369676e617475726560781b604082015260600190565b156103cd57565b60405162461bcd60e51b8152806103976004820161039b565b3561009281610217565b6100929081565b61009290546103f0565b634e487b7160e01b600052601160045260246000fd5b60001981146104265760010190565b610401565b90600019905b9181191691161790565b6100926100926100929290565b9061045861009261045f9261043b565b825461042b565b9055565b903590601e193682900301821215610082570180359067ffffffffffffffff8211610082576020019136829003831361008257565b90826000939282370152565b90916101c39083908093610498565b60601b90565b610092906104b3565b6104ce6100ac9161020b565b6104b9565b6104e490601494936101c3936104a4565b80926104c2565b634e487b7160e01b600052604160045260246000fd5b90601f01601f1916810190811067ffffffffffffffff82111761052357604052565b6104eb565b906100b061053560405190565b9283610501565b67ffffffffffffffff811161052357602090601f01601f19160190565b9061056b6105668361053c565b610528565b918252565b3d1561058a5761057f3d610559565b903d6000602084013e565b606090565b634e487b7160e01b600052601260045260246000fd5b906105af565b9190565b9081156105ba570490565b61058f565b602080825260139082015272119d5b98dd1a5bdb98d85b1b0819985a5b1959606a1b604082015260600190565b156105f357565b60405162461bcd60e51b815280610397600482016105bf565b92916000916106486106438493610621600090565b50604088019361063d61063661009287610346565b3414610377565b88610b51565b6103c6565b81850161067861066161065a836103e6565b600261026e565b61067261066d826103f7565b610417565b90610448565b610684602087016103e6565b9560608101966106b86106df6106b06106a561069f8c610346565b97610346565b9460a0810190610463565b9290956103e6565b916106d36106c560405190565b9384926020840198896104d3565b86810382520382610501565b5193f16106ea610570565b9261070e6105ab6100926106fe5a94610346565b610708603f61043b565b906105a5565b111561071d576105ab816105ec565bfe5b6100929060081c5b60ff1690565b610092905461071f565b61009290610727565b6100929054610737565b6107276100926100929290565b6020808252602e908201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160408201526d191e481a5b9a5d1a585b1a5e995960921b606082015260800190565b156107ac57565b60405162461bcd60e51b81528061039760048201610757565b9060ff90610431565b6107276100926100929260ff1690565b906107ee61009261045f926107ce565b82546107c5565b9061ff009060081b610431565b151590565b9061081761009261045f92610802565b82546107f5565b6100ac9061074a565b6020810192916100b0919061081e565b610848610844600061072d565b1590565b8080610923575b80156108de575b61085f906107a5565b8061087461086d600161074a565b60006107de565b6108cd575b6108816109e5565b61088757565b610892600080610807565b7f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024986108bc60405190565b806108c8600182610827565b0390a1565b6108d960016000610807565b610879565b506108f36108446108ee30610265565b610c9a565b8015610856575061085f6109076000610740565b61091b610914600161074a565b9160ff1690565b149050610856565b5061092e6000610740565b61093b610914600161074a565b1061084f565b61094b6009610559565b682337b93bb0b93232b960b91b602082015290565b610092610941565b6109726001610559565b603160f81b602082015290565b610092610968565b6100ac9061020b565b909594926100b0946109c26109c9926109bb6080966109b460a088019c6000890152565b6020870152565b6040850152565b6060830152565b0190610987565b906104586109e061045f92610092565b610092565b6100b06109f0610960565b610a026109fb825190565b9160200190565b20610a6e610a0e61097f565b610a196109fb825190565b2091610a2430610265565b92610a62610a3160405190565b948593602085019346917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f86610990565b90810382520382610501565b610a796109fb825190565b2060016109d0565b6100b0610837565b90929192610a996105668261053c565b9381855281830111610082576100b0916020850190610498565b610092913691610a89565b90815260e08101979695909490939092909160208601610add91610987565b60408501610aea91610987565b6060840152608083015260a082015260c00152565b6020809392610b1c61056b6101c39461190160f01b815260020190565b01918252565b634e487b7160e01b600052602160045260246000fd5b60051115610b4257565b610b22565b906100b082610b38565b9190610c51610c5792610b62600090565b50610a62610c3f610b7360016103f7565b87610c1b817fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e48610a62610bb16020610baa856103e6565b94016103e6565b948d610bbf60408201610346565b91610bf7610bf1610be6610be161065a610bdb60608801610346565b956103e6565b6103f7565b9360a0810190610463565b90610ab3565b610c026109fb825190565b2092610c0d60405190565b988997602089019788610abe565b610c266109fb825190565b2090610c3160405190565b938492602084019283610aff565b610c4a6109fb825190565b2092610ab3565b90610cc2565b610c6d610c676000949394610b47565b91610b47565b14610c79575050600090565b610c90610c8b6000610c9693016103e6565b61020b565b9161020b565b1490565b3b610ca86105ab600061043b565b1190565b61020b6100926100929290565b61009290610cac565b908051610cd26105ab604161043b565b03610cf457610168916020820151906060604084015193015160001a90610d4f565b5050610d006000610cb9565b90600290565b6100929061043b565b610d3f6100b094610d38606094989795610d2e608086019a6000870152565b60ff166020850152565b6040830152565b0152565b6040513d6000823e3d90fd5b919291610d5b83610d06565b610d7d6105ab6fa2a8918ca85bafe22016d0b997e4df60600160ff1b0361043b565b11610de257610d9d600093602095610d9460405190565b94859485610d0f565b838052039060015afa15610ddd57600051610db86000610cb9565b610dc18161020b565b610dca8361020b565b14610dd6575090600090565b9160019150565b610d43565b50505050610df06000610cb9565b9060039056fea264697066735822122026eaa5afe824c41e3c871d14cc70209049f891f5c3dfafabfa6792c058934de564736f6c63430008180033