Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
- Contract name:
- Forwarder
- Optimization enabled
- true
- Compiler version
- v0.8.24+commit.e11b9ed9
- Optimization runs
- 100
- EVM Version
- paris
- Verified at
- 2024-07-31T16:00:23.540832Z
contracts/xai-subsidy/Forwarder.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.22; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; contract Forwarder is Initializable { using ECDSA for bytes32; bytes32 public DOMAIN_SEPARATOR; bytes32 public constant FORWARD_REQUEST_TYPEHASH = keccak256("ForwardRequest(address from,address to,uint256 value,uint256 gas,uint256 nonce,bytes data)"); // Mapping to store nonces for each sender mapping(address => uint256) public nonces; struct ForwardRequest { address from; // an externally owned account making the request address to; // destination address, in this case the Receiver Contract uint256 value; // ETH Amount to transfer to destination uint256 gas; // gas limit for execution uint256 nonce; // the users nonce for this request bytes data; // the data to be sent to the destination } function initialize() public initializer { uint256 chainId; assembly { chainId := chainid() } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes("Forwarder")), // Name of the contract keccak256(bytes("1")), // Version chainId, // Chain ID address(this) // Address of the contract ) ); } function verify(ForwardRequest calldata request, bytes calldata signature) public view returns (bool) { bytes32 messageHash = keccak256( abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR, keccak256( abi.encode( FORWARD_REQUEST_TYPEHASH, request.from, request.to, request.value, request.gas, nonces[request.from], keccak256(request.data) ) ) ) ); (address recovered, ECDSA.RecoverError err) = messageHash.tryRecover(signature); if (err == ECDSA.RecoverError.NoError) { return recovered == request.from; } return false; } function execute( ForwardRequest calldata request, bytes calldata signature ) public payable returns (bool, bytes memory) { require(msg.value == request.value, "Invalid value"); require(verify(request, signature), "Invalid signature"); nonces[request.from]++; (bool success, bytes memory returndata) = request.to.call{gas: request.gas, value: request.value}( abi.encodePacked(request.data, request.from) ); if (gasleft() <= request.gas / 63) { // We explicitly trigger invalid opcode to consume all gas and bubble-up the effects, since // neither revert or assert consume all gas since Solidity 0.8.0 // https://docs.soliditylang.org/en/v0.8.0/control-structures.html#panic-via-assert-and-error-via-require assembly { invalid() } } require(success, "Functioncall failed"); return (success, returndata); } }
@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
@openzeppelin/contracts/utils/Strings.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
@openzeppelin/contracts/utils/cryptography/ECDSA.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
@openzeppelin/contracts/utils/math/Math.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
@openzeppelin/contracts/utils/math/SignedMath.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
Compiler Settings
{"viaIR":true,"outputSelection":{"*":{"*":["abi","evm.bytecode","evm.deployedBytecode","evm.methodIdentifiers"]}},"optimizer":{"runs":100,"enabled":true,"details":{"yulDetails":{"optimizerSteps":"u"}}},"libraries":{},"evmVersion":"paris"}
Contract ABI
[{"type":"event","name":"Initialized","inputs":[{"type":"uint8","name":"version","internalType":"uint8","indexed":false}],"anonymous":false},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"DOMAIN_SEPARATOR","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"FORWARD_REQUEST_TYPEHASH","inputs":[]},{"type":"function","stateMutability":"payable","outputs":[{"type":"bool","name":"","internalType":"bool"},{"type":"bytes","name":"","internalType":"bytes"}],"name":"execute","inputs":[{"type":"tuple","name":"request","internalType":"struct Forwarder.ForwardRequest","components":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"value","internalType":"uint256"},{"type":"uint256","name":"gas","internalType":"uint256"},{"type":"uint256","name":"nonce","internalType":"uint256"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"bytes","name":"signature","internalType":"bytes"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"initialize","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"nonces","inputs":[{"type":"address","name":"","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"verify","inputs":[{"type":"tuple","name":"request","internalType":"struct Forwarder.ForwardRequest","components":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"value","internalType":"uint256"},{"type":"uint256","name":"gas","internalType":"uint256"},{"type":"uint256","name":"nonce","internalType":"uint256"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"bytes","name":"signature","internalType":"bytes"}]}]
Contract Creation Code
0x60806040523461001a57604051610e2c6100208239610e2c90f35b600080fdfe6080604052600436101561001257600080fd5b60003560e01c80633644e5151461007257806347153f821461006d5780637ecebe00146100685780638129fc1c14610063578063956309681461005e5763bf5d3bdb0361008257610312565b6102f7565b6102b6565b61029b565b6101e1565b6100b2565b600091031261008257565b600080fd5b610092916008021c81565b90565b906100929154610087565b61009260006001610095565b9052565b565b34610082576100c2366004610077565b6100dd6100cd6100a0565b6040519182918290815260200190565b0390f35b908160c09103126100825790565b909182601f830112156100825781359167ffffffffffffffff831161008257602001926001830284011161008257565b91909160408184031261008257803567ffffffffffffffff811161008257836101499183016100e1565b92602082013567ffffffffffffffff81116100825761016892016100ef565b9091565b60005b83811061017f5750506000910152565b818101518382015260200161016f565b6101b06101b96020936101c3936101a4815190565b80835293849260200190565b9586910161016c565b601f01601f191690565b0190565b90151581526040602082018190526100929291019061018f565b6101f56101ef36600461011f565b9161060c565b906100dd61020260405190565b928392836101c7565b6001600160a01b031690565b6102208161020b565b0361008257565b905035906100b082610217565b906020828203126100825761009291610227565b6100929061020b906001600160a01b031682565b61009290610248565b6100929061025c565b9061027890610265565b600052602052604060002090565b600061029661009292600261026e565b610095565b34610082576100dd6100cd6102b1366004610234565b610286565b34610082576102c6366004610077565b6102ce610a81565b604051005b7fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e4890565b3461008257610307366004610077565b6100dd6100cd6102d3565b34610082576100dd61032e61032836600461011f565b91610b51565b60405191829182901515815260200190565b80610220565b3561009281610340565b6020808252600d908201526c496e76616c69642076616c756560981b604082015260600190565b1561037e57565b60405162461bcd60e51b81528061039760048201610350565b0390fd5b602080825260119082015270496e76616c6964207369676e617475726560781b604082015260600190565b156103cd57565b60405162461bcd60e51b8152806103976004820161039b565b3561009281610217565b6100929081565b61009290546103f0565b634e487b7160e01b600052601160045260246000fd5b60001981146104265760010190565b610401565b90600019905b9181191691161790565b6100926100926100929290565b9061045861009261045f9261043b565b825461042b565b9055565b903590601e193682900301821215610082570180359067ffffffffffffffff8211610082576020019136829003831361008257565b90826000939282370152565b90916101c39083908093610498565b60601b90565b610092906104b3565b6104ce6100ac9161020b565b6104b9565b6104e490601494936101c3936104a4565b80926104c2565b634e487b7160e01b600052604160045260246000fd5b90601f01601f1916810190811067ffffffffffffffff82111761052357604052565b6104eb565b906100b061053560405190565b9283610501565b67ffffffffffffffff811161052357602090601f01601f19160190565b9061056b6105668361053c565b610528565b918252565b3d1561058a5761057f3d610559565b903d6000602084013e565b606090565b634e487b7160e01b600052601260045260246000fd5b906105af565b9190565b9081156105ba570490565b61058f565b602080825260139082015272119d5b98dd1a5bdb98d85b1b0819985a5b1959606a1b604082015260600190565b156105f357565b60405162461bcd60e51b815280610397600482016105bf565b92916000916106486106438493610621600090565b50604088019361063d61063661009287610346565b3414610377565b88610b51565b6103c6565b81850161067861066161065a836103e6565b600261026e565b61067261066d826103f7565b610417565b90610448565b610684602087016103e6565b9560608101966106b86106df6106b06106a561069f8c610346565b97610346565b9460a0810190610463565b9290956103e6565b916106d36106c560405190565b9384926020840198896104d3565b86810382520382610501565b5193f16106ea610570565b9261070e6105ab6100926106fe5a94610346565b610708603f61043b565b906105a5565b111561071d576105ab816105ec565bfe5b6100929060081c5b60ff1690565b610092905461071f565b61009290610727565b6100929054610737565b6107276100926100929290565b6020808252602e908201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160408201526d191e481a5b9a5d1a585b1a5e995960921b606082015260800190565b156107ac57565b60405162461bcd60e51b81528061039760048201610757565b9060ff90610431565b6107276100926100929260ff1690565b906107ee61009261045f926107ce565b82546107c5565b9061ff009060081b610431565b151590565b9061081761009261045f92610802565b82546107f5565b6100ac9061074a565b6020810192916100b0919061081e565b610848610844600061072d565b1590565b8080610923575b80156108de575b61085f906107a5565b8061087461086d600161074a565b60006107de565b6108cd575b6108816109e5565b61088757565b610892600080610807565b7f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024986108bc60405190565b806108c8600182610827565b0390a1565b6108d960016000610807565b610879565b506108f36108446108ee30610265565b610c9a565b8015610856575061085f6109076000610740565b61091b610914600161074a565b9160ff1690565b149050610856565b5061092e6000610740565b61093b610914600161074a565b1061084f565b61094b6009610559565b682337b93bb0b93232b960b91b602082015290565b610092610941565b6109726001610559565b603160f81b602082015290565b610092610968565b6100ac9061020b565b909594926100b0946109c26109c9926109bb6080966109b460a088019c6000890152565b6020870152565b6040850152565b6060830152565b0190610987565b906104586109e061045f92610092565b610092565b6100b06109f0610960565b610a026109fb825190565b9160200190565b20610a6e610a0e61097f565b610a196109fb825190565b2091610a2430610265565b92610a62610a3160405190565b948593602085019346917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f86610990565b90810382520382610501565b610a796109fb825190565b2060016109d0565b6100b0610837565b90929192610a996105668261053c565b9381855281830111610082576100b0916020850190610498565b610092913691610a89565b90815260e08101979695909490939092909160208601610add91610987565b60408501610aea91610987565b6060840152608083015260a082015260c00152565b6020809392610b1c61056b6101c39461190160f01b815260020190565b01918252565b634e487b7160e01b600052602160045260246000fd5b60051115610b4257565b610b22565b906100b082610b38565b9190610c51610c5792610b62600090565b50610a62610c3f610b7360016103f7565b87610c1b817fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e48610a62610bb16020610baa856103e6565b94016103e6565b948d610bbf60408201610346565b91610bf7610bf1610be6610be161065a610bdb60608801610346565b956103e6565b6103f7565b9360a0810190610463565b90610ab3565b610c026109fb825190565b2092610c0d60405190565b988997602089019788610abe565b610c266109fb825190565b2090610c3160405190565b938492602084019283610aff565b610c4a6109fb825190565b2092610ab3565b90610cc2565b610c6d610c676000949394610b47565b91610b47565b14610c79575050600090565b610c90610c8b6000610c9693016103e6565b61020b565b9161020b565b1490565b3b610ca86105ab600061043b565b1190565b61020b6100926100929290565b61009290610cac565b908051610cd26105ab604161043b565b03610cf457610168916020820151906060604084015193015160001a90610d4f565b5050610d006000610cb9565b90600290565b6100929061043b565b610d3f6100b094610d38606094989795610d2e608086019a6000870152565b60ff166020850152565b6040830152565b0152565b6040513d6000823e3d90fd5b919291610d5b83610d06565b610d7d6105ab6fa2a8918ca85bafe22016d0b997e4df60600160ff1b0361043b565b11610de257610d9d600093602095610d9460405190565b94859485610d0f565b838052039060015afa15610ddd57600051610db86000610cb9565b610dc18161020b565b610dca8361020b565b14610dd6575090600090565b9160019150565b610d43565b50505050610df06000610cb9565b9060039056fea264697066735822122026eaa5afe824c41e3c871d14cc70209049f891f5c3dfafabfa6792c058934de564736f6c63430008180033
Deployed ByteCode
0x6080604052600436101561001257600080fd5b60003560e01c80633644e5151461007257806347153f821461006d5780637ecebe00146100685780638129fc1c14610063578063956309681461005e5763bf5d3bdb0361008257610312565b6102f7565b6102b6565b61029b565b6101e1565b6100b2565b600091031261008257565b600080fd5b610092916008021c81565b90565b906100929154610087565b61009260006001610095565b9052565b565b34610082576100c2366004610077565b6100dd6100cd6100a0565b6040519182918290815260200190565b0390f35b908160c09103126100825790565b909182601f830112156100825781359167ffffffffffffffff831161008257602001926001830284011161008257565b91909160408184031261008257803567ffffffffffffffff811161008257836101499183016100e1565b92602082013567ffffffffffffffff81116100825761016892016100ef565b9091565b60005b83811061017f5750506000910152565b818101518382015260200161016f565b6101b06101b96020936101c3936101a4815190565b80835293849260200190565b9586910161016c565b601f01601f191690565b0190565b90151581526040602082018190526100929291019061018f565b6101f56101ef36600461011f565b9161060c565b906100dd61020260405190565b928392836101c7565b6001600160a01b031690565b6102208161020b565b0361008257565b905035906100b082610217565b906020828203126100825761009291610227565b6100929061020b906001600160a01b031682565b61009290610248565b6100929061025c565b9061027890610265565b600052602052604060002090565b600061029661009292600261026e565b610095565b34610082576100dd6100cd6102b1366004610234565b610286565b34610082576102c6366004610077565b6102ce610a81565b604051005b7fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e4890565b3461008257610307366004610077565b6100dd6100cd6102d3565b34610082576100dd61032e61032836600461011f565b91610b51565b60405191829182901515815260200190565b80610220565b3561009281610340565b6020808252600d908201526c496e76616c69642076616c756560981b604082015260600190565b1561037e57565b60405162461bcd60e51b81528061039760048201610350565b0390fd5b602080825260119082015270496e76616c6964207369676e617475726560781b604082015260600190565b156103cd57565b60405162461bcd60e51b8152806103976004820161039b565b3561009281610217565b6100929081565b61009290546103f0565b634e487b7160e01b600052601160045260246000fd5b60001981146104265760010190565b610401565b90600019905b9181191691161790565b6100926100926100929290565b9061045861009261045f9261043b565b825461042b565b9055565b903590601e193682900301821215610082570180359067ffffffffffffffff8211610082576020019136829003831361008257565b90826000939282370152565b90916101c39083908093610498565b60601b90565b610092906104b3565b6104ce6100ac9161020b565b6104b9565b6104e490601494936101c3936104a4565b80926104c2565b634e487b7160e01b600052604160045260246000fd5b90601f01601f1916810190811067ffffffffffffffff82111761052357604052565b6104eb565b906100b061053560405190565b9283610501565b67ffffffffffffffff811161052357602090601f01601f19160190565b9061056b6105668361053c565b610528565b918252565b3d1561058a5761057f3d610559565b903d6000602084013e565b606090565b634e487b7160e01b600052601260045260246000fd5b906105af565b9190565b9081156105ba570490565b61058f565b602080825260139082015272119d5b98dd1a5bdb98d85b1b0819985a5b1959606a1b604082015260600190565b156105f357565b60405162461bcd60e51b815280610397600482016105bf565b92916000916106486106438493610621600090565b50604088019361063d61063661009287610346565b3414610377565b88610b51565b6103c6565b81850161067861066161065a836103e6565b600261026e565b61067261066d826103f7565b610417565b90610448565b610684602087016103e6565b9560608101966106b86106df6106b06106a561069f8c610346565b97610346565b9460a0810190610463565b9290956103e6565b916106d36106c560405190565b9384926020840198896104d3565b86810382520382610501565b5193f16106ea610570565b9261070e6105ab6100926106fe5a94610346565b610708603f61043b565b906105a5565b111561071d576105ab816105ec565bfe5b6100929060081c5b60ff1690565b610092905461071f565b61009290610727565b6100929054610737565b6107276100926100929290565b6020808252602e908201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160408201526d191e481a5b9a5d1a585b1a5e995960921b606082015260800190565b156107ac57565b60405162461bcd60e51b81528061039760048201610757565b9060ff90610431565b6107276100926100929260ff1690565b906107ee61009261045f926107ce565b82546107c5565b9061ff009060081b610431565b151590565b9061081761009261045f92610802565b82546107f5565b6100ac9061074a565b6020810192916100b0919061081e565b610848610844600061072d565b1590565b8080610923575b80156108de575b61085f906107a5565b8061087461086d600161074a565b60006107de565b6108cd575b6108816109e5565b61088757565b610892600080610807565b7f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024986108bc60405190565b806108c8600182610827565b0390a1565b6108d960016000610807565b610879565b506108f36108446108ee30610265565b610c9a565b8015610856575061085f6109076000610740565b61091b610914600161074a565b9160ff1690565b149050610856565b5061092e6000610740565b61093b610914600161074a565b1061084f565b61094b6009610559565b682337b93bb0b93232b960b91b602082015290565b610092610941565b6109726001610559565b603160f81b602082015290565b610092610968565b6100ac9061020b565b909594926100b0946109c26109c9926109bb6080966109b460a088019c6000890152565b6020870152565b6040850152565b6060830152565b0190610987565b906104586109e061045f92610092565b610092565b6100b06109f0610960565b610a026109fb825190565b9160200190565b20610a6e610a0e61097f565b610a196109fb825190565b2091610a2430610265565b92610a62610a3160405190565b948593602085019346917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f86610990565b90810382520382610501565b610a796109fb825190565b2060016109d0565b6100b0610837565b90929192610a996105668261053c565b9381855281830111610082576100b0916020850190610498565b610092913691610a89565b90815260e08101979695909490939092909160208601610add91610987565b60408501610aea91610987565b6060840152608083015260a082015260c00152565b6020809392610b1c61056b6101c39461190160f01b815260020190565b01918252565b634e487b7160e01b600052602160045260246000fd5b60051115610b4257565b610b22565b906100b082610b38565b9190610c51610c5792610b62600090565b50610a62610c3f610b7360016103f7565b87610c1b817fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e48610a62610bb16020610baa856103e6565b94016103e6565b948d610bbf60408201610346565b91610bf7610bf1610be6610be161065a610bdb60608801610346565b956103e6565b6103f7565b9360a0810190610463565b90610ab3565b610c026109fb825190565b2092610c0d60405190565b988997602089019788610abe565b610c266109fb825190565b2090610c3160405190565b938492602084019283610aff565b610c4a6109fb825190565b2092610ab3565b90610cc2565b610c6d610c676000949394610b47565b91610b47565b14610c79575050600090565b610c90610c8b6000610c9693016103e6565b61020b565b9161020b565b1490565b3b610ca86105ab600061043b565b1190565b61020b6100926100929290565b61009290610cac565b908051610cd26105ab604161043b565b03610cf457610168916020820151906060604084015193015160001a90610d4f565b5050610d006000610cb9565b90600290565b6100929061043b565b610d3f6100b094610d38606094989795610d2e608086019a6000870152565b60ff166020850152565b6040830152565b0152565b6040513d6000823e3d90fd5b919291610d5b83610d06565b610d7d6105ab6fa2a8918ca85bafe22016d0b997e4df60600160ff1b0361043b565b11610de257610d9d600093602095610d9460405190565b94859485610d0f565b838052039060015afa15610ddd57600051610db86000610cb9565b610dc18161020b565b610dca8361020b565b14610dd6575090600090565b9160019150565b610d43565b50505050610df06000610cb9565b9060039056fea264697066735822122026eaa5afe824c41e3c871d14cc70209049f891f5c3dfafabfa6792c058934de564736f6c63430008180033