false
false

Contract Address Details

0x89aee07e1dbafc82f089b45ffc763738e9fff226

Contract Name
Quoter
Creator
0x6c0db7–65bc41 at 0xffc6c8–461401
Balance
0 Xai ( )
Tokens
Fetching tokens...
Transactions
0 Transactions
Transfers
0 Transfers
Gas Used
Fetching gas used...
Last Balance Update
62948981
Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
Contract name:
Quoter




Optimization enabled
true
Compiler version
v0.7.6+commit.7338295f




Optimization runs
1000000
EVM Version
default




Verified at
2024-03-11T10:38:50.309867Z

Constructor Arguments

0x000000000000000000000000d8676fbdfa5b56bb2298d452c9768f51e80e34ae0000000000000000000000003fb787101dc6be47cfe18aeee15404dcc842e6af0000000000000000000000005822a45b05d08028baa3d19626870076d26bc460

Arg [0] (address) : 0xd8676fbdfa5b56bb2298d452c9768f51e80e34ae
Arg [1] (address) : 0x3fb787101dc6be47cfe18aeee15404dcc842e6af
Arg [2] (address) : 0x5822a45b05d08028baa3d19626870076d26bc460

              

contracts/lens/Quoter.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
pragma abicoder v2;

import '@cryptoalgebra/core/contracts/libraries/SafeCast.sol';
import '@cryptoalgebra/core/contracts/libraries/TickMath.sol';

import '@cryptoalgebra/core/contracts/libraries/FullMath.sol';
import '@cryptoalgebra/core/contracts/interfaces/IAlgebraPool.sol';
import '@cryptoalgebra/core/contracts/interfaces/callback/IAlgebraSwapCallback.sol';

import '../interfaces/IQuoter.sol';
import '../base/PeripheryImmutableState.sol';
import '../libraries/Path.sol';
import '../libraries/PoolAddress.sol';
import '../libraries/CallbackValidation.sol';

/// @title Provides quotes for swaps
/// @notice Allows getting the expected amount out or amount in for a given swap without executing the swap
/// @dev These functions are not gas efficient and should _not_ be called on chain. Instead, optimistically execute
/// the swap and check the amounts in the callback.
/// Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-periphery
contract Quoter is IQuoter, IAlgebraSwapCallback, PeripheryImmutableState {
    using Path for bytes;
    using SafeCast for uint256;

    /// @dev Transient storage variable used to check a safety condition in exact output swaps.
    uint256 private amountOutCached;

    constructor(
        address _factory,
        address _WNativeToken,
        address _poolDeployer
    ) PeripheryImmutableState(_factory, _WNativeToken, _poolDeployer) {}

    function getPool(address tokenA, address tokenB) private view returns (IAlgebraPool) {
        return IAlgebraPool(PoolAddress.computeAddress(poolDeployer, PoolAddress.getPoolKey(tokenA, tokenB)));
    }

    /// @inheritdoc IAlgebraSwapCallback
    function algebraSwapCallback(
        int256 amount0Delta,
        int256 amount1Delta,
        bytes memory path
    ) external view override {
        require(amount0Delta > 0 || amount1Delta > 0); // swaps entirely within 0-liquidity regions are not supported
        (address tokenIn, address tokenOut) = path.decodeFirstPool();
        CallbackValidation.verifyCallback(poolDeployer, tokenIn, tokenOut);

        (bool isExactInput, uint256 amountToPay, uint256 amountReceived) = amount0Delta > 0
            ? (tokenIn < tokenOut, uint256(amount0Delta), uint256(-amount1Delta))
            : (tokenOut < tokenIn, uint256(amount1Delta), uint256(-amount0Delta));

        IAlgebraPool pool = getPool(tokenIn, tokenOut);
        uint16 fee;
        (, , uint16 feeZto, uint16 feeOtz, , , , ) = pool.globalState();
        fee = tokenIn < tokenOut ? feeZto : feeOtz;
        if (isExactInput) {
            assembly {
                let ptr := mload(0x40)
                mstore(ptr, amountReceived)
                mstore(add(ptr, 0x20), fee)
                revert(ptr, 64)
            }
        } else {
            // if the cache has been populated, ensure that the full output amount has been received
            if (amountOutCached != 0) require(amountReceived == amountOutCached);
            assembly {
                let ptr := mload(0x40)
                mstore(ptr, amountToPay)
                mstore(add(ptr, 0x20), fee)
                revert(ptr, 64)
            }
        }
    }

    /// @dev Parses a revert reason that should contain the numeric quote
    function parseRevertReason(bytes memory reason) private pure returns (uint256, uint16) {
        if (reason.length != 64) {
            if (reason.length < 68) revert('Unexpected error');
            assembly {
                reason := add(reason, 0x04)
            }
            revert(abi.decode(reason, (string)));
        }
        return abi.decode(reason, (uint256, uint16));
    }

    /// @inheritdoc IQuoter
    function quoteExactInputSingle(
        address tokenIn,
        address tokenOut,
        uint256 amountIn,
        uint160 limitSqrtPrice
    ) public override returns (uint256 amountOut, uint16 fee) {
        bool zeroToOne = tokenIn < tokenOut;

        try
            getPool(tokenIn, tokenOut).swap(
                address(this), // address(0) might cause issues with some tokens
                zeroToOne,
                amountIn.toInt256(),
                limitSqrtPrice == 0
                    ? (zeroToOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
                    : limitSqrtPrice,
                abi.encodePacked(tokenIn, tokenOut)
            )
        {} catch (bytes memory reason) {
            (amountOut, fee) = parseRevertReason(reason);
        }
    }

    /// @inheritdoc IQuoter
    function quoteExactInput(bytes memory path, uint256 amountIn)
        external
        override
        returns (uint256 amountOut, uint16[] memory fees)
    {
        fees = new uint16[](path.numPools());
        uint256 i = 0;
        while (true) {
            bool hasMultiplePools = path.hasMultiplePools();

            (address tokenIn, address tokenOut) = path.decodeFirstPool();

            // the outputs of prior swaps become the inputs to subsequent ones
            (amountIn, fees[i]) = quoteExactInputSingle(tokenIn, tokenOut, amountIn, 0);

            // decide whether to continue or terminate
            if (hasMultiplePools) {
                path = path.skipToken();
            } else {
                return (amountIn, fees);
            }
            i++;
        }
    }

    /// @inheritdoc IQuoter
    function quoteExactOutputSingle(
        address tokenIn,
        address tokenOut,
        uint256 amountOut,
        uint160 limitSqrtPrice
    ) public override returns (uint256 amountIn, uint16 fee) {
        bool zeroToOne = tokenIn < tokenOut;

        // if no price limit has been specified, cache the output amount for comparison in the swap callback
        if (limitSqrtPrice == 0) amountOutCached = amountOut;
        try
            getPool(tokenIn, tokenOut).swap(
                address(this), // address(0) might cause issues with some tokens
                zeroToOne,
                -amountOut.toInt256(),
                limitSqrtPrice == 0
                    ? (zeroToOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
                    : limitSqrtPrice,
                abi.encodePacked(tokenOut, tokenIn)
            )
        {} catch (bytes memory reason) {
            if (limitSqrtPrice == 0) delete amountOutCached; // clear cache
            (amountIn, fee) = parseRevertReason(reason);
        }
    }

    /// @inheritdoc IQuoter
    function quoteExactOutput(bytes memory path, uint256 amountOut)
        external
        override
        returns (uint256 amountIn, uint16[] memory fees)
    {
        fees = new uint16[](path.numPools());
        uint256 i = 0;
        while (true) {
            bool hasMultiplePools = path.hasMultiplePools();

            (address tokenOut, address tokenIn) = path.decodeFirstPool();

            // the inputs of prior swaps become the outputs of subsequent ones
            (amountOut, fees[i]) = quoteExactOutputSingle(tokenIn, tokenOut, amountOut, 0);

            // decide whether to continue or terminate
            if (hasMultiplePools) {
                path = path.skipToken();
            } else {
                return (amountOut, fees);
            }
            i++;
        }
    }
}
        

contracts/base/PeripheryImmutableState.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;

import '../interfaces/IPeripheryImmutableState.sol';

/// @title Immutable state
/// @notice Immutable state used by periphery contracts
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-periphery
abstract contract PeripheryImmutableState is IPeripheryImmutableState {
    /// @inheritdoc IPeripheryImmutableState
    address public immutable override factory;
    /// @inheritdoc IPeripheryImmutableState
    address public immutable override poolDeployer;
    /// @inheritdoc IPeripheryImmutableState
    address public immutable override WNativeToken;

    constructor(
        address _factory,
        address _WNativeToken,
        address _poolDeployer
    ) {
        factory = _factory;
        poolDeployer = _poolDeployer;
        WNativeToken = _WNativeToken;
    }
}
          

@cryptoalgebra/core/contracts/interfaces/IAlgebraPool.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import './pool/IAlgebraPoolImmutables.sol';
import './pool/IAlgebraPoolState.sol';
import './pool/IAlgebraPoolDerivedState.sol';
import './pool/IAlgebraPoolActions.sol';
import './pool/IAlgebraPoolPermissionedActions.sol';
import './pool/IAlgebraPoolEvents.sol';

/**
 * @title The interface for a Algebra Pool
 * @dev The pool interface is broken up into many smaller pieces.
 * Credit to Uniswap Labs under GPL-2.0-or-later license:
 * https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
 */
interface IAlgebraPool is
  IAlgebraPoolImmutables,
  IAlgebraPoolState,
  IAlgebraPoolDerivedState,
  IAlgebraPoolActions,
  IAlgebraPoolPermissionedActions,
  IAlgebraPoolEvents
{
  // used only for combining interfaces
}
          

@cryptoalgebra/core/contracts/interfaces/IDataStorageOperator.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
pragma abicoder v2;

import '../libraries/AdaptiveFee.sol';

interface IDataStorageOperator {
  event FeeConfiguration(bool zto, AdaptiveFee.Configuration feeConfig);

  /**
   * @notice Returns data belonging to a certain timepoint
   * @param index The index of timepoint in the array
   * @dev There is more convenient function to fetch a timepoint: getTimepoints(). Which requires not an index but seconds
   * @return initialized Whether the timepoint has been initialized and the values are safe to use,
   * blockTimestamp The timestamp of the observation,
   * tickCumulative The tick multiplied by seconds elapsed for the life of the pool as of the timepoint timestamp,
   * secondsPerLiquidityCumulative The seconds per in range liquidity for the life of the pool as of the timepoint timestamp,
   * volatilityCumulative Cumulative standard deviation for the life of the pool as of the timepoint timestamp,
   * averageTick Time-weighted average tick,
   * volumePerLiquidityCumulative Cumulative swap volume per liquidity for the life of the pool as of the timepoint timestamp
   */
  function timepoints(uint256 index)
    external
    view
    returns (
      bool initialized,
      uint32 blockTimestamp,
      int56 tickCumulative,
      uint160 secondsPerLiquidityCumulative,
      uint88 volatilityCumulative,
      int24 averageTick,
      uint144 volumePerLiquidityCumulative
    );

  /// @notice Initialize the dataStorage array by writing the first slot. Called once for the lifecycle of the timepoints array
  /// @param time The time of the dataStorage initialization, via block.timestamp truncated to uint32
  /// @param tick Initial tick
  function initialize(uint32 time, int24 tick) external;

  /// @dev Reverts if an timepoint at or before the desired timepoint timestamp does not exist.
  /// 0 may be passed as `secondsAgo' to return the current cumulative values.
  /// If called with a timestamp falling between two timepoints, returns the counterfactual accumulator values
  /// at exactly the timestamp between the two timepoints.
  /// @param time The current block timestamp
  /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an timepoint
  /// @param tick The current tick
  /// @param index The index of the timepoint that was most recently written to the timepoints array
  /// @param liquidity The current in-range pool liquidity
  /// @return tickCumulative The cumulative tick since the pool was first initialized, as of `secondsAgo`
  /// @return secondsPerLiquidityCumulative The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
  /// @return volatilityCumulative The cumulative volatility value since the pool was first initialized, as of `secondsAgo`
  /// @return volumePerAvgLiquidity The cumulative volume per liquidity value since the pool was first initialized, as of `secondsAgo`
  function getSingleTimepoint(
    uint32 time,
    uint32 secondsAgo,
    int24 tick,
    uint16 index,
    uint128 liquidity
  )
    external
    view
    returns (
      int56 tickCumulative,
      uint160 secondsPerLiquidityCumulative,
      uint112 volatilityCumulative,
      uint256 volumePerAvgLiquidity
    );

  /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
  /// @dev Reverts if `secondsAgos` > oldest timepoint
  /// @param time The current block.timestamp
  /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an timepoint
  /// @param tick The current tick
  /// @param index The index of the timepoint that was most recently written to the timepoints array
  /// @param liquidity The current in-range pool liquidity
  /// @return tickCumulatives The cumulative tick since the pool was first initialized, as of each `secondsAgo`
  /// @return secondsPerLiquidityCumulatives The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
  /// @return volatilityCumulatives The cumulative volatility values since the pool was first initialized, as of each `secondsAgo`
  /// @return volumePerAvgLiquiditys The cumulative volume per liquidity values since the pool was first initialized, as of each `secondsAgo`
  function getTimepoints(
    uint32 time,
    uint32[] memory secondsAgos,
    int24 tick,
    uint16 index,
    uint128 liquidity
  )
    external
    view
    returns (
      int56[] memory tickCumulatives,
      uint160[] memory secondsPerLiquidityCumulatives,
      uint112[] memory volatilityCumulatives,
      uint256[] memory volumePerAvgLiquiditys
    );

  /// @notice Returns average volatility in the range from time-WINDOW to time
  /// @param time The current block.timestamp
  /// @param tick The current tick
  /// @param index The index of the timepoint that was most recently written to the timepoints array
  /// @param liquidity The current in-range pool liquidity
  /// @return TWVolatilityAverage The average volatility in the recent range
  /// @return TWVolumePerLiqAverage The average volume per liquidity in the recent range
  function getAverages(
    uint32 time,
    int24 tick,
    uint16 index,
    uint128 liquidity
  ) external view returns (uint112 TWVolatilityAverage, uint256 TWVolumePerLiqAverage);

  /// @notice Writes an dataStorage timepoint to the array
  /// @dev Writable at most once per block. Index represents the most recently written element. index must be tracked externally.
  /// @param index The index of the timepoint that was most recently written to the timepoints array
  /// @param blockTimestamp The timestamp of the new timepoint
  /// @param tick The active tick at the time of the new timepoint
  /// @param liquidity The total in-range liquidity at the time of the new timepoint
  /// @param volumePerLiquidity The gmean(volumes)/liquidity at the time of the new timepoint
  /// @return indexUpdated The new index of the most recently written element in the dataStorage array
  function write(
    uint16 index,
    uint32 blockTimestamp,
    int24 tick,
    uint128 liquidity,
    uint128 volumePerLiquidity
  ) external returns (uint16 indexUpdated);

  /// @notice Changes fee configuration for the pool
  function changeFeeConfiguration(bool zto, AdaptiveFee.Configuration calldata feeConfig) external;

  /// @notice Calculates gmean(volume/liquidity) for block
  /// @param liquidity The current in-range pool liquidity
  /// @param amount0 Total amount of swapped token0
  /// @param amount1 Total amount of swapped token1
  /// @return volumePerLiquidity gmean(volume/liquidity) capped by 100000 << 64
  function calculateVolumePerLiquidity(
    uint128 liquidity,
    int256 amount0,
    int256 amount1
  ) external pure returns (uint128 volumePerLiquidity);

  /// @return windowLength Length of window used to calculate averages
  function window() external view returns (uint32 windowLength);

  /// @notice Calculates fee based on combination of sigmoids
  /// @param time The current block.timestamp
  /// @param tick The current tick
  /// @param index The index of the timepoint that was most recently written to the timepoints array
  /// @param liquidity The current in-range pool liquidity
  /// @return feeZto The fee for ZtO swaps in hundredths of a bip, i.e. 1e-6
  /// @return feeOtz The fee for OtZ swaps in hundredths of a bip, i.e. 1e-6
  function getFees(
    uint32 time,
    int24 tick,
    uint16 index,
    uint128 liquidity
  ) external view returns (uint16 feeZto, uint16 feeOtz);
}
          

@cryptoalgebra/core/contracts/interfaces/callback/IAlgebraSwapCallback.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Callback for IAlgebraPoolActions#swap
/// @notice Any contract that calls IAlgebraPoolActions#swap must implement this interface
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
interface IAlgebraSwapCallback {
  /// @notice Called to `msg.sender` after executing a swap via IAlgebraPool#swap.
  /// @dev In the implementation you must pay the pool tokens owed for the swap.
  /// The caller of this method must be checked to be a AlgebraPool deployed by the canonical AlgebraFactory.
  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
  /// @param data Any data passed through by the caller via the IAlgebraPoolActions#swap call
  function algebraSwapCallback(
    int256 amount0Delta,
    int256 amount1Delta,
    bytes calldata data
  ) external;
}
          

@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolActions.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissionless pool actions
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
interface IAlgebraPoolActions {
  /**
   * @notice Sets the initial price for the pool
   * @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
   * @param price the initial sqrt price of the pool as a Q64.96
   */
  function initialize(uint160 price) external;

  /**
   * @notice Adds liquidity for the given recipient/bottomTick/topTick position
   * @dev The caller of this method receives a callback in the form of IAlgebraMintCallback# AlgebraMintCallback
   * in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
   * on bottomTick, topTick, the amount of liquidity, and the current price.
   * @param sender The address which will receive potential surplus of paid tokens
   * @param recipient The address for which the liquidity will be created
   * @param bottomTick The lower tick of the position in which to add liquidity
   * @param topTick The upper tick of the position in which to add liquidity
   * @param amount The desired amount of liquidity to mint
   * @param data Any data that should be passed through to the callback
   * @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
   * @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
   * @return liquidityActual The actual minted amount of liquidity
   */
  function mint(
    address sender,
    address recipient,
    int24 bottomTick,
    int24 topTick,
    uint128 amount,
    bytes calldata data
  )
    external
    returns (
      uint256 amount0,
      uint256 amount1,
      uint128 liquidityActual
    );

  /**
   * @notice Collects tokens owed to a position
   * @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
   * Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
   * amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
   * actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
   * @param recipient The address which should receive the fees collected
   * @param bottomTick The lower tick of the position for which to collect fees
   * @param topTick The upper tick of the position for which to collect fees
   * @param amount0Requested How much token0 should be withdrawn from the fees owed
   * @param amount1Requested How much token1 should be withdrawn from the fees owed
   * @return amount0 The amount of fees collected in token0
   * @return amount1 The amount of fees collected in token1
   */
  function collect(
    address recipient,
    int24 bottomTick,
    int24 topTick,
    uint128 amount0Requested,
    uint128 amount1Requested
  ) external returns (uint128 amount0, uint128 amount1);

  /**
   * @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
   * @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
   * @dev Fees must be collected separately via a call to #collect
   * @param bottomTick The lower tick of the position for which to burn liquidity
   * @param topTick The upper tick of the position for which to burn liquidity
   * @param amount How much liquidity to burn
   * @return amount0 The amount of token0 sent to the recipient
   * @return amount1 The amount of token1 sent to the recipient
   */
  function burn(
    int24 bottomTick,
    int24 topTick,
    uint128 amount
  ) external returns (uint256 amount0, uint256 amount1);

  /**
   * @notice Swap token0 for token1, or token1 for token0
   * @dev The caller of this method receives a callback in the form of IAlgebraSwapCallback# AlgebraSwapCallback
   * @param recipient The address to receive the output of the swap
   * @param zeroToOne The direction of the swap, true for token0 to token1, false for token1 to token0
   * @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
   * @param limitSqrtPrice The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
   * value after the swap. If one for zero, the price cannot be greater than this value after the swap
   * @param data Any data to be passed through to the callback. If using the Router it should contain
   * SwapRouter#SwapCallbackData
   * @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
   * @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
   */
  function swap(
    address recipient,
    bool zeroToOne,
    int256 amountSpecified,
    uint160 limitSqrtPrice,
    bytes calldata data
  ) external returns (int256 amount0, int256 amount1);

  /**
   * @notice Swap token0 for token1, or token1 for token0 (tokens that have fee on transfer)
   * @dev The caller of this method receives a callback in the form of I AlgebraSwapCallback# AlgebraSwapCallback
   * @param sender The address called this function (Comes from the Router)
   * @param recipient The address to receive the output of the swap
   * @param zeroToOne The direction of the swap, true for token0 to token1, false for token1 to token0
   * @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
   * @param limitSqrtPrice The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
   * value after the swap. If one for zero, the price cannot be greater than this value after the swap
   * @param data Any data to be passed through to the callback. If using the Router it should contain
   * SwapRouter#SwapCallbackData
   * @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
   * @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
   */
  function swapSupportingFeeOnInputTokens(
    address sender,
    address recipient,
    bool zeroToOne,
    int256 amountSpecified,
    uint160 limitSqrtPrice,
    bytes calldata data
  ) external returns (int256 amount0, int256 amount1);

  /**
   * @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
   * @dev The caller of this method receives a callback in the form of IAlgebraFlashCallback# AlgebraFlashCallback
   * @dev All excess tokens paid in the callback are distributed to liquidity providers as an additional fee. So this method can be used
   * to donate underlying tokens to currently in-range liquidity providers by calling with 0 amount{0,1} and sending
   * the donation amount(s) from the callback
   * @param recipient The address which will receive the token0 and token1 amounts
   * @param amount0 The amount of token0 to send
   * @param amount1 The amount of token1 to send
   * @param data Any data to be passed through to the callback
   */
  function flash(
    address recipient,
    uint256 amount0,
    uint256 amount1,
    bytes calldata data
  ) external;
}
          

@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolDerivedState.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/**
 * @title Pool state that is not stored
 * @notice Contains view functions to provide information about the pool that is computed rather than stored on the
 * blockchain. The functions here may have variable gas costs.
 * @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
 * https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
 */
interface IAlgebraPoolDerivedState {
  /**
   * @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
   * @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
   * the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
   * you must call it with secondsAgos = [3600, 0].
   * @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
   * log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
   * @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
   * @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
   * @return secondsPerLiquidityCumulatives Cumulative seconds per liquidity-in-range value as of each `secondsAgos`
   * from the current block timestamp
   * @return volatilityCumulatives Cumulative standard deviation as of each `secondsAgos`
   * @return volumePerAvgLiquiditys Cumulative swap volume per liquidity as of each `secondsAgos`
   */
  function getTimepoints(uint32[] calldata secondsAgos)
    external
    view
    returns (
      int56[] memory tickCumulatives,
      uint160[] memory secondsPerLiquidityCumulatives,
      uint112[] memory volatilityCumulatives,
      uint256[] memory volumePerAvgLiquiditys
    );

  /**
   * @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
   * @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
   * I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
   * snapshot is taken and the second snapshot is taken.
   * @param bottomTick The lower tick of the range
   * @param topTick The upper tick of the range
   * @return innerTickCumulative The snapshot of the tick accumulator for the range
   * @return innerSecondsSpentPerLiquidity The snapshot of seconds per liquidity for the range
   * @return innerSecondsSpent The snapshot of the number of seconds during which the price was in this range
   */
  function getInnerCumulatives(int24 bottomTick, int24 topTick)
    external
    view
    returns (
      int56 innerTickCumulative,
      uint160 innerSecondsSpentPerLiquidity,
      uint32 innerSecondsSpent
    );
}
          

@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolEvents.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Events emitted by a pool
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
interface IAlgebraPoolEvents {
  /**
   * @notice Emitted exactly once by a pool when #initialize is first called on the pool
   * @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
   * @param price The initial sqrt price of the pool, as a Q64.96
   * @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
   */
  event Initialize(uint160 price, int24 tick);

  /**
   * @notice Emitted when liquidity is minted for a given position
   * @param sender The address that minted the liquidity
   * @param owner The owner of the position and recipient of any minted liquidity
   * @param bottomTick The lower tick of the position
   * @param topTick The upper tick of the position
   * @param liquidityAmount The amount of liquidity minted to the position range
   * @param amount0 How much token0 was required for the minted liquidity
   * @param amount1 How much token1 was required for the minted liquidity
   */
  event Mint(
    address sender,
    address indexed owner,
    int24 indexed bottomTick,
    int24 indexed topTick,
    uint128 liquidityAmount,
    uint256 amount0,
    uint256 amount1
  );

  /**
   * @notice Emitted when fees are collected by the owner of a position
   * @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
   * @param owner The owner of the position for which fees are collected
   * @param recipient The address that received fees
   * @param bottomTick The lower tick of the position
   * @param topTick The upper tick of the position
   * @param amount0 The amount of token0 fees collected
   * @param amount1 The amount of token1 fees collected
   */
  event Collect(address indexed owner, address recipient, int24 indexed bottomTick, int24 indexed topTick, uint128 amount0, uint128 amount1);

  /**
   * @notice Emitted when a position's liquidity is removed
   * @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
   * @param owner The owner of the position for which liquidity is removed
   * @param bottomTick The lower tick of the position
   * @param topTick The upper tick of the position
   * @param liquidityAmount The amount of liquidity to remove
   * @param amount0 The amount of token0 withdrawn
   * @param amount1 The amount of token1 withdrawn
   */
  event Burn(address indexed owner, int24 indexed bottomTick, int24 indexed topTick, uint128 liquidityAmount, uint256 amount0, uint256 amount1);

  /**
   * @notice Emitted by the pool for any swaps between token0 and token1
   * @param sender The address that initiated the swap call, and that received the callback
   * @param recipient The address that received the output of the swap
   * @param amount0 The delta of the token0 balance of the pool
   * @param amount1 The delta of the token1 balance of the pool
   * @param price The sqrt(price) of the pool after the swap, as a Q64.96
   * @param liquidity The liquidity of the pool after the swap
   * @param tick The log base 1.0001 of price of the pool after the swap
   */
  event Swap(address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 price, uint128 liquidity, int24 tick);

  /**
   * @notice Emitted by the pool for any flashes of token0/token1
   * @param sender The address that initiated the swap call, and that received the callback
   * @param recipient The address that received the tokens from flash
   * @param amount0 The amount of token0 that was flashed
   * @param amount1 The amount of token1 that was flashed
   * @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
   * @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
   */
  event Flash(address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1);

  /**
   * @notice Emitted when the community fee is changed by the pool
   * @param communityFee0New The updated value of the token0 community fee percent
   * @param communityFee1New The updated value of the token1 community fee percent
   */
  event CommunityFee(uint8 communityFee0New, uint8 communityFee1New);

  /**
   * @notice Emitted when the tick spacing changes
   * @param newTickSpacing The updated value of the new tick spacing
   */
  event TickSpacing(int24 newTickSpacing);

  /**
   * @notice Emitted when new activeIncentive is set
   * @param virtualPoolAddress The address of a virtual pool associated with the current active incentive
   */
  event Incentive(address indexed virtualPoolAddress);

  /**
   * @notice Emitted when the fee changes
   * @param feeZto The value of the token fee for zto swaps
   * @param feeOtz The value of the token fee for otz swaps
   */
  event Fee(uint16 feeZto, uint16 feeOtz);

  /**
   * @notice Emitted when the LiquidityCooldown changes
   * @param liquidityCooldown The value of locktime for added liquidity
   */
  event LiquidityCooldown(uint32 liquidityCooldown);
}
          

@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolImmutables.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import '../IDataStorageOperator.sol';

/// @title Pool state that never changes
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
interface IAlgebraPoolImmutables {
  /**
   * @notice The contract that stores all the timepoints and can perform actions with them
   * @return The operator address
   */
  function dataStorageOperator() external view returns (address);

  /**
   * @notice The contract that deployed the pool, which must adhere to the IAlgebraFactory interface
   * @return The contract address
   */
  function factory() external view returns (address);

  /**
   * @notice The first of the two tokens of the pool, sorted by address
   * @return The token contract address
   */
  function token0() external view returns (address);

  /**
   * @notice The second of the two tokens of the pool, sorted by address
   * @return The token contract address
   */
  function token1() external view returns (address);

  /**
   * @notice The maximum amount of position liquidity that can use any tick in the range
   * @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
   * also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
   * @return The max amount of liquidity per tick
   */
  function maxLiquidityPerTick() external view returns (uint128);
}
          

@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolPermissionedActions.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/**
 * @title Permissioned pool actions
 * @notice Contains pool methods that may only be called by the factory owner or tokenomics
 * @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
 * https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
 */
interface IAlgebraPoolPermissionedActions {
  /**
   * @notice Set the community's % share of the fees. Cannot exceed 25% (250)
   * @param communityFee0 new community fee percent for token0 of the pool in thousandths (1e-3)
   * @param communityFee1 new community fee percent for token1 of the pool in thousandths (1e-3)
   */
  function setCommunityFee(uint8 communityFee0, uint8 communityFee1) external;

  /// @notice Set the new tick spacing values. Only factory owner
  /// @param newTickSpacing The new tick spacing value
  function setTickSpacing(int24 newTickSpacing) external;

  /**
   * @notice Sets an active incentive
   * @param virtualPoolAddress The address of a virtual pool associated with the incentive
   */
  function setIncentive(address virtualPoolAddress) external;

  /**
   * @notice Sets new lock time for added liquidity
   * @param newLiquidityCooldown The time in seconds
   */
  function setLiquidityCooldown(uint32 newLiquidityCooldown) external;
}
          

@cryptoalgebra/core/contracts/interfaces/pool/IAlgebraPoolState.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that can change
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
interface IAlgebraPoolState {
  /**
   * @notice The globalState structure in the pool stores many values but requires only one slot
   * and is exposed as a single method to save gas when accessed externally.
   * @return price The current price of the pool as a sqrt(token1/token0) Q64.96 value;
   * Returns tick The current tick of the pool, i.e. according to the last tick transition that was run;
   * Returns This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(price) if the price is on a tick
   * boundary;
   * Returns feeZto The last pool fee value for ZtO swaps in hundredths of a bip, i.e. 1e-6;
   * Returns feeOtz The last pool fee value for OtZ swaps in hundredths of a bip, i.e. 1e-6;
   * Returns timepointIndex The index of the last written timepoint;
   * Returns communityFeeToken0 The community fee percentage of the swap fee in thousandths (1e-3) for token0;
   * Returns communityFeeToken1 The community fee percentage of the swap fee in thousandths (1e-3) for token1;
   * Returns unlocked Whether the pool is currently locked to reentrancy;
   */
  function globalState()
    external
    view
    returns (
      uint160 price,
      int24 tick,
      uint16 feeZto,
      uint16 feeOtz,
      uint16 timepointIndex,
      uint8 communityFeeToken0,
      uint8 communityFeeToken1,
      bool unlocked
    );

  /**
   * @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
   * @dev This value can overflow the uint256
   */
  function totalFeeGrowth0Token() external view returns (uint256);

  /**
   * @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
   * @dev This value can overflow the uint256
   */
  function totalFeeGrowth1Token() external view returns (uint256);

  /**
   * @notice The currently in range liquidity available to the pool
   * @dev This value has no relationship to the total liquidity across all ticks.
   * Returned value cannot exceed type(uint128).max
   */
  function liquidity() external view returns (uint128);

  /**
   * @notice Look up information about a specific tick in the pool
   * @dev This is a public structure, so the `return` natspec tags are omitted.
   * @param tick The tick to look up
   * @return liquidityTotal the total amount of position liquidity that uses the pool either as tick lower or
   * tick upper;
   * Returns liquidityDelta how much liquidity changes when the pool price crosses the tick;
   * Returns outerFeeGrowth0Token the fee growth on the other side of the tick from the current tick in token0;
   * Returns outerFeeGrowth1Token the fee growth on the other side of the tick from the current tick in token1;
   * Returns outerTickCumulative the cumulative tick value on the other side of the tick from the current tick;
   * Returns outerSecondsPerLiquidity the seconds spent per liquidity on the other side of the tick from the current tick;
   * Returns outerSecondsSpent the seconds spent on the other side of the tick from the current tick;
   * Returns initialized Set to true if the tick is initialized, i.e. liquidityTotal is greater than 0
   * otherwise equal to false. Outside values can only be used if the tick is initialized.
   * In addition, these values are only relative and must be used only in comparison to previous snapshots for
   * a specific position.
   */
  function ticks(int24 tick)
    external
    view
    returns (
      uint128 liquidityTotal,
      int128 liquidityDelta,
      uint256 outerFeeGrowth0Token,
      uint256 outerFeeGrowth1Token,
      int56 outerTickCumulative,
      uint160 outerSecondsPerLiquidity,
      uint32 outerSecondsSpent,
      bool initialized
    );

  /** @notice Returns 256 packed tick initialized boolean values. See TickTable for more information */
  function tickTable(int16 wordPosition) external view returns (uint256);

  /**
   * @notice Returns the information about a position by the position's key
   * @dev This is a public mapping of structures, so the `return` natspec tags are omitted.
   * @param key The position's key is a hash of a preimage composed by the owner, bottomTick and topTick
   * @return liquidityAmount The amount of liquidity in the position;
   * Returns lastLiquidityAddTimestamp Timestamp of last adding of liquidity;
   * Returns innerFeeGrowth0Token Fee growth of token0 inside the tick range as of the last mint/burn/poke;
   * Returns innerFeeGrowth1Token Fee growth of token1 inside the tick range as of the last mint/burn/poke;
   * Returns fees0 The computed amount of token0 owed to the position as of the last mint/burn/poke;
   * Returns fees1 The computed amount of token1 owed to the position as of the last mint/burn/poke
   */
  function positions(bytes32 key)
    external
    view
    returns (
      uint128 liquidityAmount,
      uint32 lastLiquidityAddTimestamp,
      uint256 innerFeeGrowth0Token,
      uint256 innerFeeGrowth1Token,
      uint128 fees0,
      uint128 fees1
    );

  /**
   * @notice Returns data about a specific timepoint index
   * @param index The element of the timepoints array to fetch
   * @dev You most likely want to use #getTimepoints() instead of this method to get an timepoint as of some amount of time
   * ago, rather than at a specific index in the array.
   * This is a public mapping of structures, so the `return` natspec tags are omitted.
   * @return initialized whether the timepoint has been initialized and the values are safe to use;
   * Returns blockTimestamp The timestamp of the timepoint;
   * Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the timepoint timestamp;
   * Returns secondsPerLiquidityCumulative the seconds per in range liquidity for the life of the pool as of the timepoint timestamp;
   * Returns volatilityCumulative Cumulative standard deviation for the life of the pool as of the timepoint timestamp;
   * Returns averageTick Time-weighted average tick;
   * Returns volumePerLiquidityCumulative Cumulative swap volume per liquidity for the life of the pool as of the timepoint timestamp;
   */
  function timepoints(uint256 index)
    external
    view
    returns (
      bool initialized,
      uint32 blockTimestamp,
      int56 tickCumulative,
      uint160 secondsPerLiquidityCumulative,
      uint88 volatilityCumulative,
      int24 averageTick,
      uint144 volumePerLiquidityCumulative
    );

  /**
   * @notice Returns the information about active incentive
   * @dev if there is no active incentive at the moment, virtualPool,endTimestamp,startTimestamp would be equal to 0
   * @return virtualPool The address of a virtual pool associated with the current active incentive
   */
  function activeIncentive() external view returns (address virtualPool);

  /**
   * @notice Returns the lock time for added liquidity
   */
  function liquidityCooldown() external view returns (uint32 cooldownInSeconds);

  /**
   * @notice The pool tick spacing
   * @dev Ticks can only be used at multiples of this value
   * e.g.: a tickSpacing of 60 means ticks can be initialized every 60th tick, i.e., ..., -120, -60, 0, 60, 120, ...
   * This value is an int24 to avoid casting even though it is always positive.
   * @return The tick spacing
   */
  function tickSpacing() external view returns (int24);
}
          

@cryptoalgebra/core/contracts/libraries/AdaptiveFee.sol

// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.7.6;

import './Constants.sol';

/// @title AdaptiveFee
/// @notice Calculates fee based on combination of sigmoids
library AdaptiveFee {
  // alpha1 + alpha2 + baseFee must be <= type(uint16).max
  struct Configuration {
    uint16 alpha1; // max value of the first sigmoid
    uint16 alpha2; // max value of the second sigmoid
    uint32 beta1; // shift along the x-axis for the first sigmoid
    uint32 beta2; // shift along the x-axis for the second sigmoid
    uint16 gamma1; // horizontal stretch factor for the first sigmoid
    uint16 gamma2; // horizontal stretch factor for the second sigmoid
    uint32 volumeBeta; // shift along the x-axis for the outer volume-sigmoid
    uint16 volumeGamma; // horizontal stretch factor the outer volume-sigmoid
    uint16 baseFee; // minimum possible fee
  }

  /// @notice Calculates fee based on formula:
  /// baseFee + sigmoidVolume(sigmoid1(volatility, volumePerLiquidity) + sigmoid2(volatility, volumePerLiquidity))
  /// maximum value capped by baseFee + alpha1 + alpha2
  function getFee(
    uint88 volatility,
    uint256 volumePerLiquidity,
    Configuration memory config
  ) internal pure returns (uint16 fee) {
    uint256 sumOfSigmoids = sigmoid(volatility, config.gamma1, config.alpha1, config.beta1) +
      sigmoid(volatility, config.gamma2, config.alpha2, config.beta2);

    if (sumOfSigmoids > type(uint16).max) {
      // should be impossible, just in case
      sumOfSigmoids = type(uint16).max;
    }

    return uint16(config.baseFee + sigmoid(volumePerLiquidity, config.volumeGamma, uint16(sumOfSigmoids), config.volumeBeta)); // safe since alpha1 + alpha2 + baseFee _must_ be <= type(uint16).max
  }

  /// @notice calculates α / (1 + e^( (β-x) / γ))
  /// that is a sigmoid with a maximum value of α, x-shifted by β, and stretched by γ
  /// @dev returns uint256 for fuzzy testing. Guaranteed that the result is not greater than alpha
  function sigmoid(
    uint256 x,
    uint16 g,
    uint16 alpha,
    uint256 beta
  ) internal pure returns (uint256 res) {
    if (x > beta) {
      x = x - beta;
      if (x >= 6 * uint256(g)) return alpha; // so x < 19 bits
      uint256 g8 = uint256(g)**8; // < 128 bits (8*16)
      uint256 ex = exp(x, g, g8); // < 155 bits
      res = (alpha * ex) / (g8 + ex); // in worst case: (16 + 155 bits) / 155 bits
      // so res <= alpha
    } else {
      x = beta - x;
      if (x >= 6 * uint256(g)) return 0; // so x < 19 bits
      uint256 g8 = uint256(g)**8; // < 128 bits (8*16)
      uint256 ex = g8 + exp(x, g, g8); // < 156 bits
      res = (alpha * g8) / ex; // in worst case: (16 + 128 bits) / 156 bits
      // g8 <= ex, so res <= alpha
    }
  }

  /// @notice calculates e^(x/g) * g^8 in a series, since (around zero):
  /// e^x = 1 + x + x^2/2 + ... + x^n/n! + ...
  /// e^(x/g) = 1 + x/g + x^2/(2*g^2) + ... + x^(n)/(g^n * n!) + ...
  function exp(
    uint256 x,
    uint16 g,
    uint256 gHighestDegree
  ) internal pure returns (uint256 res) {
    // calculating:
    // g**8 + x * g**7 + (x**2 * g**6) / 2 + (x**3 * g**5) / 6 + (x**4 * g**4) / 24 + (x**5 * g**3) / 120 + (x**6 * g^2) / 720 + x**7 * g / 5040 + x**8 / 40320

    // x**8 < 152 bits (19*8) and g**8 < 128 bits (8*16)
    // so each summand < 152 bits and res < 155 bits
    uint256 xLowestDegree = x;
    res = gHighestDegree; // g**8

    gHighestDegree /= g; // g**7
    res += xLowestDegree * gHighestDegree;

    gHighestDegree /= g; // g**6
    xLowestDegree *= x; // x**2
    res += (xLowestDegree * gHighestDegree) / 2;

    gHighestDegree /= g; // g**5
    xLowestDegree *= x; // x**3
    res += (xLowestDegree * gHighestDegree) / 6;

    gHighestDegree /= g; // g**4
    xLowestDegree *= x; // x**4
    res += (xLowestDegree * gHighestDegree) / 24;

    gHighestDegree /= g; // g**3
    xLowestDegree *= x; // x**5
    res += (xLowestDegree * gHighestDegree) / 120;

    gHighestDegree /= g; // g**2
    xLowestDegree *= x; // x**6
    res += (xLowestDegree * gHighestDegree) / 720;

    xLowestDegree *= x; // x**7
    res += (xLowestDegree * g) / 5040 + (xLowestDegree * x) / (40320);
  }
}
          

@cryptoalgebra/core/contracts/libraries/Constants.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;

library Constants {
  uint8 internal constant RESOLUTION = 96;
  uint256 internal constant Q96 = 0x1000000000000000000000000;
  uint256 internal constant Q128 = 0x100000000000000000000000000000000;
  // fee value in hundredths of a bip, i.e. 1e-6
  uint16 internal constant BASE_FEE = 100;
  int24 internal constant MAX_TICK_SPACING = 500;

  // max(uint128) / (MAX_TICK - MIN_TICK)
  uint128 internal constant MAX_LIQUIDITY_PER_TICK = 191757638537527648490752896198553;

  uint32 internal constant MAX_LIQUIDITY_COOLDOWN = 1 days;
  uint8 internal constant MAX_COMMUNITY_FEE = 250;
  uint256 internal constant COMMUNITY_FEE_DENOMINATOR = 1000;
}
          

@cryptoalgebra/core/contracts/libraries/FullMath.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.4.0 || ^0.5.0 || ^0.6.0 || ^0.7.0;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
  /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
  /// @param a The multiplicand
  /// @param b The multiplier
  /// @param denominator The divisor
  /// @return result The 256-bit result
  /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
  function mulDiv(
    uint256 a,
    uint256 b,
    uint256 denominator
  ) internal pure returns (uint256 result) {
    // 512-bit multiply [prod1 prod0] = a * b
    // Compute the product mod 2**256 and mod 2**256 - 1
    // then use the Chinese Remainder Theorem to reconstruct
    // the 512 bit result. The result is stored in two 256
    // variables such that product = prod1 * 2**256 + prod0
    uint256 prod0 = a * b; // Least significant 256 bits of the product
    uint256 prod1; // Most significant 256 bits of the product
    assembly {
      let mm := mulmod(a, b, not(0))
      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    // Make sure the result is less than 2**256.
    // Also prevents denominator == 0
    require(denominator > prod1);

    // Handle non-overflow cases, 256 by 256 division
    if (prod1 == 0) {
      assembly {
        result := div(prod0, denominator)
      }
      return result;
    }

    ///////////////////////////////////////////////
    // 512 by 256 division.
    ///////////////////////////////////////////////

    // Make division exact by subtracting the remainder from [prod1 prod0]
    // Compute remainder using mulmod
    // Subtract 256 bit remainder from 512 bit number
    assembly {
      let remainder := mulmod(a, b, denominator)
      prod1 := sub(prod1, gt(remainder, prod0))
      prod0 := sub(prod0, remainder)
    }

    // Factor powers of two out of denominator
    // Compute largest power of two divisor of denominator.
    // Always >= 1.
    uint256 twos = -denominator & denominator;
    // Divide denominator by power of two
    assembly {
      denominator := div(denominator, twos)
    }

    // Divide [prod1 prod0] by the factors of two
    assembly {
      prod0 := div(prod0, twos)
    }
    // Shift in bits from prod1 into prod0. For this we need
    // to flip `twos` such that it is 2**256 / twos.
    // If twos is zero, then it becomes one
    assembly {
      twos := add(div(sub(0, twos), twos), 1)
    }
    prod0 |= prod1 * twos;

    // Invert denominator mod 2**256
    // Now that denominator is an odd number, it has an inverse
    // modulo 2**256 such that denominator * inv = 1 mod 2**256.
    // Compute the inverse by starting with a seed that is correct
    // correct for four bits. That is, denominator * inv = 1 mod 2**4
    uint256 inv = (3 * denominator) ^ 2;
    // Now use Newton-Raphson iteration to improve the precision.
    // Thanks to Hensel's lifting lemma, this also works in modular
    // arithmetic, doubling the correct bits in each step.
    inv *= 2 - denominator * inv; // inverse mod 2**8
    inv *= 2 - denominator * inv; // inverse mod 2**16
    inv *= 2 - denominator * inv; // inverse mod 2**32
    inv *= 2 - denominator * inv; // inverse mod 2**64
    inv *= 2 - denominator * inv; // inverse mod 2**128
    inv *= 2 - denominator * inv; // inverse mod 2**256

    // Because the division is now exact we can divide by multiplying
    // with the modular inverse of denominator. This will give us the
    // correct result modulo 2**256. Since the preconditions guarantee
    // that the outcome is less than 2**256, this is the final result.
    // We don't need to compute the high bits of the result and prod1
    // is no longer required.
    result = prod0 * inv;
    return result;
  }

  /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
  /// @param a The multiplicand
  /// @param b The multiplier
  /// @param denominator The divisor
  /// @return result The 256-bit result
  function mulDivRoundingUp(
    uint256 a,
    uint256 b,
    uint256 denominator
  ) internal pure returns (uint256 result) {
    if (a == 0 || ((result = a * b) / a == b)) {
      require(denominator > 0);
      assembly {
        result := add(div(result, denominator), gt(mod(result, denominator), 0))
      }
    } else {
      result = mulDiv(a, b, denominator);
      if (mulmod(a, b, denominator) > 0) {
        require(result < type(uint256).max);
        result++;
      }
    }
  }

  /// @notice Returns ceil(x / y)
  /// @dev division by 0 has unspecified behavior, and must be checked externally
  /// @param x The dividend
  /// @param y The divisor
  /// @return z The quotient, ceil(x / y)
  function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
    assembly {
      z := add(div(x, y), gt(mod(x, y), 0))
    }
  }
}
          

@cryptoalgebra/core/contracts/libraries/SafeCast.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Safe casting methods
/// @notice Contains methods for safely casting between types
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries
library SafeCast {
  /// @notice Cast a uint256 to a uint160, revert on overflow
  /// @param y The uint256 to be downcasted
  /// @return z The downcasted integer, now type uint160
  function toUint160(uint256 y) internal pure returns (uint160 z) {
    require((z = uint160(y)) == y);
  }

  /// @notice Cast a int256 to a int128, revert on overflow or underflow
  /// @param y The int256 to be downcasted
  /// @return z The downcasted integer, now type int128
  function toInt128(int256 y) internal pure returns (int128 z) {
    require((z = int128(y)) == y);
  }

  /// @notice Cast a uint256 to a int256, revert on overflow
  /// @param y The uint256 to be casted
  /// @return z The casted integer, now type int256
  function toInt256(uint256 y) internal pure returns (int256 z) {
    require(y < 2**255);
    z = int256(y);
  }
}
          

@cryptoalgebra/core/contracts/libraries/TickMath.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries
library TickMath {
  /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
  int24 internal constant MIN_TICK = -887272;
  /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
  int24 internal constant MAX_TICK = -MIN_TICK;

  /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
  uint160 internal constant MIN_SQRT_RATIO = 4295128739;
  /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
  uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;

  /// @notice Calculates sqrt(1.0001^tick) * 2^96
  /// @dev Throws if |tick| > max tick
  /// @param tick The input tick for the above formula
  /// @return price A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
  /// at the given tick
  function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 price) {
    // get abs value
    int24 mask = tick >> (24 - 1);
    uint256 absTick = uint256((tick ^ mask) - mask);
    require(absTick <= uint256(MAX_TICK), 'T');

    uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
    if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
    if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
    if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
    if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
    if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
    if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
    if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
    if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
    if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
    if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
    if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
    if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
    if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
    if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
    if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
    if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
    if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
    if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
    if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

    if (tick > 0) ratio = type(uint256).max / ratio;

    // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
    // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
    // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
    price = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
  }

  /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
  /// @dev Throws in case price < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
  /// ever return.
  /// @param price The sqrt ratio for which to compute the tick as a Q64.96
  /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
  function getTickAtSqrtRatio(uint160 price) internal pure returns (int24 tick) {
    // second inequality must be < because the price can never reach the price at the max tick
    require(price >= MIN_SQRT_RATIO && price < MAX_SQRT_RATIO, 'R');
    uint256 ratio = uint256(price) << 32;

    uint256 r = ratio;
    uint256 msb = 0;

    assembly {
      let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
      msb := or(msb, f)
      r := shr(f, r)
    }
    assembly {
      let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
      msb := or(msb, f)
      r := shr(f, r)
    }
    assembly {
      let f := shl(5, gt(r, 0xFFFFFFFF))
      msb := or(msb, f)
      r := shr(f, r)
    }
    assembly {
      let f := shl(4, gt(r, 0xFFFF))
      msb := or(msb, f)
      r := shr(f, r)
    }
    assembly {
      let f := shl(3, gt(r, 0xFF))
      msb := or(msb, f)
      r := shr(f, r)
    }
    assembly {
      let f := shl(2, gt(r, 0xF))
      msb := or(msb, f)
      r := shr(f, r)
    }
    assembly {
      let f := shl(1, gt(r, 0x3))
      msb := or(msb, f)
      r := shr(f, r)
    }
    assembly {
      let f := gt(r, 0x1)
      msb := or(msb, f)
    }

    if (msb >= 128) r = ratio >> (msb - 127);
    else r = ratio << (127 - msb);

    int256 log_2 = (int256(msb) - 128) << 64;

    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(63, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(62, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(61, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(60, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(59, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(58, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(57, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(56, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(55, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(54, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(53, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(52, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(51, f))
      r := shr(f, r)
    }
    assembly {
      r := shr(127, mul(r, r))
      let f := shr(128, r)
      log_2 := or(log_2, shl(50, f))
    }

    int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

    int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
    int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

    tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= price ? tickHi : tickLow;
  }
}
          

contracts/interfaces/IPeripheryImmutableState.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Immutable state
/// @notice Functions that return immutable state of the router
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-periphery
interface IPeripheryImmutableState {
    /// @return Returns the address of the Algebra factory
    function factory() external view returns (address);

    /// @return Returns the address of the pool Deployer
    function poolDeployer() external view returns (address);

    /// @return Returns the address of WNativeToken
    function WNativeToken() external view returns (address);
}
          

contracts/interfaces/IQuoter.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

/// @title Quoter Interface
/// @notice Supports quoting the calculated amounts from exact input or exact output swaps
/// @dev These functions are not marked view because they rely on calling non-view functions and reverting
/// to compute the result. They are also not gas efficient and should not be called on-chain.
/// Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-periphery
interface IQuoter {
    /// @notice Returns the amount out received for a given exact input swap without executing the swap
    /// @param path The path of the swap, i.e. each token pair
    /// @param amountIn The amount of the first token to swap
    /// @return amountOut The amount of the last token that would be received
    function quoteExactInput(bytes memory path, uint256 amountIn)
        external
        returns (uint256 amountOut, uint16[] memory fees);

    /// @notice Returns the amount out received for a given exact input but for a swap of a single pool
    /// @param tokenIn The token being swapped in
    /// @param tokenOut The token being swapped out
    /// @param amountIn The desired input amount
    /// @param limitSqrtPrice The price limit of the pool that cannot be exceeded by the swap
    /// @return amountOut The amount of `tokenOut` that would be received
    function quoteExactInputSingle(
        address tokenIn,
        address tokenOut,
        uint256 amountIn,
        uint160 limitSqrtPrice
    ) external returns (uint256 amountOut, uint16 fee);

    /// @notice Returns the amount in required for a given exact output swap without executing the swap
    /// @param path The path of the swap, i.e. each token pair. Path must be provided in reverse order
    /// @param amountOut The amount of the last token to receive
    /// @return amountIn The amount of first token required to be paid
    function quoteExactOutput(bytes memory path, uint256 amountOut)
        external
        returns (uint256 amountIn, uint16[] memory fees);

    /// @notice Returns the amount in required to receive the given exact output amount but for a swap of a single pool
    /// @param tokenIn The token being swapped in
    /// @param tokenOut The token being swapped out
    /// @param amountOut The desired output amount
    /// @param limitSqrtPrice The price limit of the pool that cannot be exceeded by the swap
    /// @return amountIn The amount required as the input for the swap in order to receive `amountOut`
    function quoteExactOutputSingle(
        address tokenIn,
        address tokenOut,
        uint256 amountOut,
        uint160 limitSqrtPrice
    ) external returns (uint256 amountIn, uint16 fee);
}
          

contracts/libraries/BytesLib.sol

// SPDX-License-Identifier: GPL-2.0-or-later
/**
 * @title Solidity Bytes Arrays Utils
 * @author Gonçalo Sá <[email protected]>
 *
 * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
 *     The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
 */
pragma solidity >=0.5.0 <0.8.0;

library BytesLib {
    function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
        require(_length + 31 >= _length, 'slice_overflow');
        require(_start + _length >= _start, 'slice_overflow');
        require(_bytes.length >= _start + _length, 'slice_outOfBounds');

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)
                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
        require(_start + 20 >= _start, 'toAddress_overflow');
        require(_bytes.length >= _start + 20, 'toAddress_outOfBounds');
        address tempAddress;

        assembly {
            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
        }

        return tempAddress;
    }

    function toUint24(bytes memory _bytes, uint256 _start) internal pure returns (uint24) {
        require(_start + 3 >= _start, 'toUint24_overflow');
        require(_bytes.length >= _start + 3, 'toUint24_outOfBounds');
        uint24 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x3), _start))
        }

        return tempUint;
    }
}
          

contracts/libraries/CallbackValidation.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;

import '@cryptoalgebra/core/contracts/interfaces/IAlgebraPool.sol';
import './PoolAddress.sol';

/// @notice Provides validation for callbacks from Algebra Pools
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-periphery
library CallbackValidation {
    /// @notice Returns the address of a valid Algebra Pool
    /// @param poolDeployer The contract address of the Algebra pool deployer
    /// @param tokenA The contract address of either token0 or token1
    /// @param tokenB The contract address of the other token
    /// @return pool The V3 pool contract address
    function verifyCallback(
        address poolDeployer,
        address tokenA,
        address tokenB
    ) internal view returns (IAlgebraPool pool) {
        return verifyCallback(poolDeployer, PoolAddress.getPoolKey(tokenA, tokenB));
    }

    /// @notice Returns the address of a valid Algebra Pool
    /// @param poolDeployer The contract address of the Algebra pool deployer
    /// @param poolKey The identifying key of the V3 pool
    /// @return pool The V3 pool contract address
    function verifyCallback(address poolDeployer, PoolAddress.PoolKey memory poolKey)
        internal
        view
        returns (IAlgebraPool pool)
    {
        pool = IAlgebraPool(PoolAddress.computeAddress(poolDeployer, poolKey));
        require(msg.sender == address(pool));
    }
}
          

contracts/libraries/Path.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;

import './BytesLib.sol';

/// @title Functions for manipulating path data for multihop swaps
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-periphery
library Path {
    using BytesLib for bytes;

    /// @dev The length of the bytes encoded address
    uint256 private constant ADDR_SIZE = 20;
    /// @dev The length of the bytes encoded fee
    uint256 private constant FEE_SIZE = 3;

    /// @dev The offset of a single token address and pool fee
    uint256 private constant NEXT_OFFSET = ADDR_SIZE;
    /// @dev The offset of an encoded pool key
    uint256 private constant POP_OFFSET = NEXT_OFFSET + ADDR_SIZE;
    /// @dev The minimum length of an encoding that contains 2 or more pools
    uint256 private constant MULTIPLE_POOLS_MIN_LENGTH = POP_OFFSET + NEXT_OFFSET;

    /// @notice Returns true iff the path contains two or more pools
    /// @param path The encoded swap path
    /// @return True if path contains two or more pools, otherwise false
    function hasMultiplePools(bytes memory path) internal pure returns (bool) {
        return path.length >= MULTIPLE_POOLS_MIN_LENGTH;
    }

    /// @notice Returns the number of pools in the path
    /// @param path The encoded swap path
    /// @return The number of pools in the path
    function numPools(bytes memory path) internal pure returns (uint256) {
        // Ignore the first token address. From then on every fee and token offset indicates a pool.
        return ((path.length - ADDR_SIZE) / NEXT_OFFSET);
    }

    /// @notice Decodes the first pool in path
    /// @param path The bytes encoded swap path
    /// @return tokenA The first token of the given pool
    /// @return tokenB The second token of the given pool
    function decodeFirstPool(bytes memory path) internal pure returns (address tokenA, address tokenB) {
        tokenA = path.toAddress(0);
        tokenB = path.toAddress(NEXT_OFFSET);
    }

    /// @notice Gets the segment corresponding to the first pool in the path
    /// @param path The bytes encoded swap path
    /// @return The segment containing all data necessary to target the first pool in the path
    function getFirstPool(bytes memory path) internal pure returns (bytes memory) {
        return path.slice(0, POP_OFFSET);
    }

    /// @notice Skips a token + fee element from the buffer and returns the remainder
    /// @param path The swap path
    /// @return The remaining token + fee elements in the path
    function skipToken(bytes memory path) internal pure returns (bytes memory) {
        return path.slice(NEXT_OFFSET, path.length - NEXT_OFFSET);
    }
}
          

contracts/libraries/PoolAddress.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-periphery
library PoolAddress {
    bytes32 internal constant POOL_INIT_CODE_HASH = 0x6c1bebd370ba84753516bc1393c0d0a6c645856da55f5393ac8ab3d6dbc861d3;

    /// @notice The identifying key of the pool
    struct PoolKey {
        address token0;
        address token1;
    }

    /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
    /// @param tokenA The first token of a pool, unsorted
    /// @param tokenB The second token of a pool, unsorted
    /// @return Poolkey The pool details with ordered token0 and token1 assignments
    function getPoolKey(address tokenA, address tokenB) internal pure returns (PoolKey memory) {
        if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
        return PoolKey({token0: tokenA, token1: tokenB});
    }

    /// @notice Deterministically computes the pool address given the factory and PoolKey
    /// @param factory The Algebra factory contract address
    /// @param key The PoolKey
    /// @return pool The contract address of the V3 pool
    function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
        require(key.token0 < key.token1);
        pool = address(
            uint256(
                keccak256(
                    abi.encodePacked(
                        hex'ff',
                        factory,
                        keccak256(abi.encode(key.token0, key.token1)),
                        POOL_INIT_CODE_HASH
                    )
                )
            )
        );
    }
}
          

Compiler Settings

{"outputSelection":{"*":{"*":["abi","evm.bytecode","evm.deployedBytecode","evm.methodIdentifiers"]}},"optimizer":{"runs":1000000,"enabled":true},"metadata":{"bytecodeHash":"none"},"libraries":{}}
              

Contract ABI

[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"address","name":"_factory","internalType":"address"},{"type":"address","name":"_WNativeToken","internalType":"address"},{"type":"address","name":"_poolDeployer","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"WNativeToken","inputs":[]},{"type":"function","stateMutability":"view","outputs":[],"name":"algebraSwapCallback","inputs":[{"type":"int256","name":"amount0Delta","internalType":"int256"},{"type":"int256","name":"amount1Delta","internalType":"int256"},{"type":"bytes","name":"path","internalType":"bytes"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"factory","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"poolDeployer","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"amountOut","internalType":"uint256"},{"type":"uint16[]","name":"fees","internalType":"uint16[]"}],"name":"quoteExactInput","inputs":[{"type":"bytes","name":"path","internalType":"bytes"},{"type":"uint256","name":"amountIn","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"amountOut","internalType":"uint256"},{"type":"uint16","name":"fee","internalType":"uint16"}],"name":"quoteExactInputSingle","inputs":[{"type":"address","name":"tokenIn","internalType":"address"},{"type":"address","name":"tokenOut","internalType":"address"},{"type":"uint256","name":"amountIn","internalType":"uint256"},{"type":"uint160","name":"limitSqrtPrice","internalType":"uint160"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"amountIn","internalType":"uint256"},{"type":"uint16[]","name":"fees","internalType":"uint16[]"}],"name":"quoteExactOutput","inputs":[{"type":"bytes","name":"path","internalType":"bytes"},{"type":"uint256","name":"amountOut","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"amountIn","internalType":"uint256"},{"type":"uint16","name":"fee","internalType":"uint16"}],"name":"quoteExactOutputSingle","inputs":[{"type":"address","name":"tokenIn","internalType":"address"},{"type":"address","name":"tokenOut","internalType":"address"},{"type":"uint256","name":"amountOut","internalType":"uint256"},{"type":"uint160","name":"limitSqrtPrice","internalType":"uint160"}]}]
              

Contract Creation Code

0x60e06040523480156200001157600080fd5b50604051620014f9380380620014f9833981016040819052620000349162000078565b6001600160601b0319606093841b811660805290831b811660a052911b1660c052620000c1565b80516001600160a01b03811681146200007357600080fd5b919050565b6000806000606084860312156200008d578283fd5b62000098846200005b565b9250620000a8602085016200005b565b9150620000b8604085016200005b565b90509250925092565b60805160601c60a05160601c60c05160601c6113f862000101600039806105b4525080610165528061059052806108a952508061078552506113f86000f3fe608060405234801561001057600080fd5b50600436106100885760003560e01c80638af3ac851161005b5780638af3ac85146101025780639e73c81d1461010a578063c45a01551461011d578063cdca17531461012557610088565b80632c8958f61461008d5780632d9ebd1d146100a25780632f80bb1d146100cc5780633119049a146100ed575b600080fd5b6100a061009b366004610ff9565b610138565b005b6100b56100b0366004610f41565b610323565b6040516100c3929190611320565b60405180910390f35b6100df6100da366004610f93565b6104b9565b6040516100c39291906112cf565b6100f561058e565b6040516100c39190611212565b6100f56105b2565b6100b5610118366004610f41565b6105d6565b6100f5610783565b6100df610133366004610f93565b6107a7565b60008313806101475750600082135b61015057600080fd5b60008061015c83610864565b9150915061018b7f00000000000000000000000000000000000000000000000000000000000000008383610885565b5060008060008088136101d1578473ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16108789600003610206565b8373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff161088886000035b925092509250600061021886866108a2565b905060008060008373ffffffffffffffffffffffffffffffffffffffff1663e76c01e46040518163ffffffff1660e01b81526004016101006040518083038186803b15801561026657600080fd5b505afa15801561027a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061029e91906110ba565b505050509350935050508773ffffffffffffffffffffffffffffffffffffffff168973ffffffffffffffffffffffffffffffffffffffff16106102e157806102e3565b815b925086156102fc57604051858152836020820152604081fd5b6000541561031257600054851461031257600080fd5b604051868152836020820152604081fd5b60008073ffffffffffffffffffffffffffffffffffffffff8086169087161061034c87876108a2565b73ffffffffffffffffffffffffffffffffffffffff1663128acb083083610372896108e0565b73ffffffffffffffffffffffffffffffffffffffff89161561039457886103ba565b856103b35773fffd8963efd1fc6a506488495d951d5263988d256103ba565b6401000276a45b8c8c6040516020016103cd9291906111d8565b6040516020818303038152906040526040518663ffffffff1660e01b81526004016103fc959493929190611233565b6040805180830381600087803b15801561041557600080fd5b505af1925050508015610463575060408051601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016820190925261046091810190610fd6565b60015b6104ac573d808015610491576040519150601f19603f3d011682016040523d82523d6000602084013e610496565b606091505b506104a081610912565b90945092506104af9050565b50505b5094509492505050565b600060606104c6846109cd565b67ffffffffffffffff811180156104dc57600080fd5b50604051908082528060200260200182016040528015610506578160200160208202803683370190505b50905060005b6000610517866109e5565b905060008061052588610864565b9150915061053681838960006105d6565b86868151811061054257fe5b602002602001018161ffff1661ffff168152508198505050821561057057610569886109ed565b975061057c565b86955050505050610587565b50505060010161050c565b9250929050565b7f000000000000000000000000000000000000000000000000000000000000000081565b7f000000000000000000000000000000000000000000000000000000000000000081565b60008073ffffffffffffffffffffffffffffffffffffffff808616878216109084166106025760008590555b61060c87876108a2565b73ffffffffffffffffffffffffffffffffffffffff1663128acb083083610632896108e0565b60000373ffffffffffffffffffffffffffffffffffffffff891615610657578861067d565b856106765773fffd8963efd1fc6a506488495d951d5263988d2561067d565b6401000276a45b8b8d6040516020016106909291906111d8565b6040516020818303038152906040526040518663ffffffff1660e01b81526004016106bf959493929190611233565b6040805180830381600087803b1580156106d857600080fd5b505af1925050508015610726575060408051601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016820190925261072391810190610fd6565b60015b6104ac573d808015610754576040519150601f19603f3d011682016040523d82523d6000602084013e610759565b606091505b5073ffffffffffffffffffffffffffffffffffffffff851661077a57600080555b6104a081610912565b7f000000000000000000000000000000000000000000000000000000000000000081565b600060606107b4846109cd565b67ffffffffffffffff811180156107ca57600080fd5b506040519080825280602002602001820160405280156107f4578160200160208202803683370190505b50905060005b6000610805866109e5565b905060008061081388610864565b915091506108248282896000610323565b86868151811061083057fe5b602002602001018161ffff1661ffff168152508198505050821561057057610857886109ed565b97505050506001016107fa565b6000806108718382610a08565b915061087e836014610a08565b9050915091565b600061089a846108958585610b08565b610b77565b949350505050565b60006108d77f00000000000000000000000000000000000000000000000000000000000000006108d28585610b08565b610ba7565b90505b92915050565b60007f8000000000000000000000000000000000000000000000000000000000000000821061090e57600080fd5b5090565b60008082516040146109b057604483511015610963576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161095a90611298565b60405180910390fd5b6004830192508280602001905181019061097d9190611047565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161095a9190611285565b828060200190518101906109c49190611163565b91509150915091565b6000601480835103816109dc57fe5b0490505b919050565b51603c111590565b60606108da60148084510384610ccf9092919063ffffffff16565b600081826014011015610a7c57604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601260248201527f746f416464726573735f6f766572666c6f770000000000000000000000000000604482015290519081900360640190fd5b8160140183511015610aef57604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601560248201527f746f416464726573735f6f75744f66426f756e64730000000000000000000000604482015290519081900360640190fd5b5001602001516c01000000000000000000000000900490565b610b10610eb6565b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff161115610b48579091905b506040805180820190915273ffffffffffffffffffffffffffffffffffffffff92831681529116602082015290565b6000610b838383610ba7565b90503373ffffffffffffffffffffffffffffffffffffffff8216146108da57600080fd5b6000816020015173ffffffffffffffffffffffffffffffffffffffff16826000015173ffffffffffffffffffffffffffffffffffffffff1610610be957600080fd5b5080516020918201516040805173ffffffffffffffffffffffffffffffffffffffff938416818601529290911682820152805180830382018152606080840183528151918501919091207fff00000000000000000000000000000000000000000000000000000000000000608085015294901b7fffffffffffffffffffffffffffffffffffffffff00000000000000000000000016608183015260958201939093527f6c1bebd370ba84753516bc1393c0d0a6c645856da55f5393ac8ab3d6dbc861d360b5808301919091528351808303909101815260d5909101909252815191012090565b60608182601f011015610d4357604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f736c6963655f6f766572666c6f77000000000000000000000000000000000000604482015290519081900360640190fd5b828284011015610db457604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f736c6963655f6f766572666c6f77000000000000000000000000000000000000604482015290519081900360640190fd5b81830184511015610e2657604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601160248201527f736c6963655f6f75744f66426f756e6473000000000000000000000000000000604482015290519081900360640190fd5b606082158015610e455760405191506000825260208201604052610ead565b6040519150601f8416801560200281840101858101878315602002848b0101015b81831015610e7e578051835260209283019201610e66565b5050858452601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016604052505b50949350505050565b604080518082019091526000808252602082015290565b600082601f830112610edd578081fd5b8135610ef0610eeb82611356565b611332565b818152846020838601011115610f04578283fd5b816020850160208301379081016020019190915292915050565b805161ffff811681146109e057600080fd5b805160ff811681146109e057600080fd5b60008060008060808587031215610f56578384fd5b8435610f61816113c6565b93506020850135610f71816113c6565b9250604085013591506060850135610f88816113c6565b939692955090935050565b60008060408385031215610fa5578182fd5b823567ffffffffffffffff811115610fbb578283fd5b610fc785828601610ecd565b95602094909401359450505050565b60008060408385031215610fe8578182fd5b505080516020909101519092909150565b60008060006060848603121561100d578283fd5b8335925060208401359150604084013567ffffffffffffffff811115611031578182fd5b61103d86828701610ecd565b9150509250925092565b600060208284031215611058578081fd5b815167ffffffffffffffff81111561106e578182fd5b8201601f8101841361107e578182fd5b805161108c610eeb82611356565b8181528560208385010111156110a0578384fd5b6110b1826020830160208601611396565b95945050505050565b600080600080600080600080610100898b0312156110d6578384fd5b88516110e1816113c6565b8098505060208901518060020b81146110f8578485fd5b965061110660408a01610f1e565b955061111460608a01610f1e565b945061112260808a01610f1e565b935061113060a08a01610f30565b925061113e60c08a01610f30565b915060e08901518015158114611152578182fd5b809150509295985092959890939650565b60008060408385031215611175578182fd5b8251915061118560208401610f1e565b90509250929050565b600081518084526111a6816020860160208601611396565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b7fffffffffffffffffffffffffffffffffffffffff000000000000000000000000606093841b811682529190921b16601482015260280190565b73ffffffffffffffffffffffffffffffffffffffff91909116815260200190565b600073ffffffffffffffffffffffffffffffffffffffff8088168352861515602084015285604084015280851660608401525060a0608083015261127a60a083018461118e565b979650505050505050565b6000602082526108d7602083018461118e565b60208082526010908201527f556e6578706563746564206572726f7200000000000000000000000000000000604082015260600190565b60006040820184835260206040818501528185518084526060860191508287019350845b8181101561131357845161ffff16835293830193918301916001016112f3565b5090979650505050505050565b91825261ffff16602082015260400190565b60405181810167ffffffffffffffff8111828210171561134e57fe5b604052919050565b600067ffffffffffffffff82111561136a57fe5b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b60005b838110156113b1578181015183820152602001611399565b838111156113c0576000848401525b50505050565b73ffffffffffffffffffffffffffffffffffffffff811681146113e857600080fd5b5056fea164736f6c6343000706000a000000000000000000000000d8676fbdfa5b56bb2298d452c9768f51e80e34ae0000000000000000000000003fb787101dc6be47cfe18aeee15404dcc842e6af0000000000000000000000005822a45b05d08028baa3d19626870076d26bc460

Deployed ByteCode

0x608060405234801561001057600080fd5b50600436106100885760003560e01c80638af3ac851161005b5780638af3ac85146101025780639e73c81d1461010a578063c45a01551461011d578063cdca17531461012557610088565b80632c8958f61461008d5780632d9ebd1d146100a25780632f80bb1d146100cc5780633119049a146100ed575b600080fd5b6100a061009b366004610ff9565b610138565b005b6100b56100b0366004610f41565b610323565b6040516100c3929190611320565b60405180910390f35b6100df6100da366004610f93565b6104b9565b6040516100c39291906112cf565b6100f561058e565b6040516100c39190611212565b6100f56105b2565b6100b5610118366004610f41565b6105d6565b6100f5610783565b6100df610133366004610f93565b6107a7565b60008313806101475750600082135b61015057600080fd5b60008061015c83610864565b9150915061018b7f0000000000000000000000005822a45b05d08028baa3d19626870076d26bc4608383610885565b5060008060008088136101d1578473ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16108789600003610206565b8373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff161088886000035b925092509250600061021886866108a2565b905060008060008373ffffffffffffffffffffffffffffffffffffffff1663e76c01e46040518163ffffffff1660e01b81526004016101006040518083038186803b15801561026657600080fd5b505afa15801561027a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061029e91906110ba565b505050509350935050508773ffffffffffffffffffffffffffffffffffffffff168973ffffffffffffffffffffffffffffffffffffffff16106102e157806102e3565b815b925086156102fc57604051858152836020820152604081fd5b6000541561031257600054851461031257600080fd5b604051868152836020820152604081fd5b60008073ffffffffffffffffffffffffffffffffffffffff8086169087161061034c87876108a2565b73ffffffffffffffffffffffffffffffffffffffff1663128acb083083610372896108e0565b73ffffffffffffffffffffffffffffffffffffffff89161561039457886103ba565b856103b35773fffd8963efd1fc6a506488495d951d5263988d256103ba565b6401000276a45b8c8c6040516020016103cd9291906111d8565b6040516020818303038152906040526040518663ffffffff1660e01b81526004016103fc959493929190611233565b6040805180830381600087803b15801561041557600080fd5b505af1925050508015610463575060408051601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016820190925261046091810190610fd6565b60015b6104ac573d808015610491576040519150601f19603f3d011682016040523d82523d6000602084013e610496565b606091505b506104a081610912565b90945092506104af9050565b50505b5094509492505050565b600060606104c6846109cd565b67ffffffffffffffff811180156104dc57600080fd5b50604051908082528060200260200182016040528015610506578160200160208202803683370190505b50905060005b6000610517866109e5565b905060008061052588610864565b9150915061053681838960006105d6565b86868151811061054257fe5b602002602001018161ffff1661ffff168152508198505050821561057057610569886109ed565b975061057c565b86955050505050610587565b50505060010161050c565b9250929050565b7f0000000000000000000000005822a45b05d08028baa3d19626870076d26bc46081565b7f0000000000000000000000003fb787101dc6be47cfe18aeee15404dcc842e6af81565b60008073ffffffffffffffffffffffffffffffffffffffff808616878216109084166106025760008590555b61060c87876108a2565b73ffffffffffffffffffffffffffffffffffffffff1663128acb083083610632896108e0565b60000373ffffffffffffffffffffffffffffffffffffffff891615610657578861067d565b856106765773fffd8963efd1fc6a506488495d951d5263988d2561067d565b6401000276a45b8b8d6040516020016106909291906111d8565b6040516020818303038152906040526040518663ffffffff1660e01b81526004016106bf959493929190611233565b6040805180830381600087803b1580156106d857600080fd5b505af1925050508015610726575060408051601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016820190925261072391810190610fd6565b60015b6104ac573d808015610754576040519150601f19603f3d011682016040523d82523d6000602084013e610759565b606091505b5073ffffffffffffffffffffffffffffffffffffffff851661077a57600080555b6104a081610912565b7f000000000000000000000000d8676fbdfa5b56bb2298d452c9768f51e80e34ae81565b600060606107b4846109cd565b67ffffffffffffffff811180156107ca57600080fd5b506040519080825280602002602001820160405280156107f4578160200160208202803683370190505b50905060005b6000610805866109e5565b905060008061081388610864565b915091506108248282896000610323565b86868151811061083057fe5b602002602001018161ffff1661ffff168152508198505050821561057057610857886109ed565b97505050506001016107fa565b6000806108718382610a08565b915061087e836014610a08565b9050915091565b600061089a846108958585610b08565b610b77565b949350505050565b60006108d77f0000000000000000000000005822a45b05d08028baa3d19626870076d26bc4606108d28585610b08565b610ba7565b90505b92915050565b60007f8000000000000000000000000000000000000000000000000000000000000000821061090e57600080fd5b5090565b60008082516040146109b057604483511015610963576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161095a90611298565b60405180910390fd5b6004830192508280602001905181019061097d9190611047565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161095a9190611285565b828060200190518101906109c49190611163565b91509150915091565b6000601480835103816109dc57fe5b0490505b919050565b51603c111590565b60606108da60148084510384610ccf9092919063ffffffff16565b600081826014011015610a7c57604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601260248201527f746f416464726573735f6f766572666c6f770000000000000000000000000000604482015290519081900360640190fd5b8160140183511015610aef57604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601560248201527f746f416464726573735f6f75744f66426f756e64730000000000000000000000604482015290519081900360640190fd5b5001602001516c01000000000000000000000000900490565b610b10610eb6565b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff161115610b48579091905b506040805180820190915273ffffffffffffffffffffffffffffffffffffffff92831681529116602082015290565b6000610b838383610ba7565b90503373ffffffffffffffffffffffffffffffffffffffff8216146108da57600080fd5b6000816020015173ffffffffffffffffffffffffffffffffffffffff16826000015173ffffffffffffffffffffffffffffffffffffffff1610610be957600080fd5b5080516020918201516040805173ffffffffffffffffffffffffffffffffffffffff938416818601529290911682820152805180830382018152606080840183528151918501919091207fff00000000000000000000000000000000000000000000000000000000000000608085015294901b7fffffffffffffffffffffffffffffffffffffffff00000000000000000000000016608183015260958201939093527f6c1bebd370ba84753516bc1393c0d0a6c645856da55f5393ac8ab3d6dbc861d360b5808301919091528351808303909101815260d5909101909252815191012090565b60608182601f011015610d4357604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f736c6963655f6f766572666c6f77000000000000000000000000000000000000604482015290519081900360640190fd5b828284011015610db457604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f736c6963655f6f766572666c6f77000000000000000000000000000000000000604482015290519081900360640190fd5b81830184511015610e2657604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601160248201527f736c6963655f6f75744f66426f756e6473000000000000000000000000000000604482015290519081900360640190fd5b606082158015610e455760405191506000825260208201604052610ead565b6040519150601f8416801560200281840101858101878315602002848b0101015b81831015610e7e578051835260209283019201610e66565b5050858452601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016604052505b50949350505050565b604080518082019091526000808252602082015290565b600082601f830112610edd578081fd5b8135610ef0610eeb82611356565b611332565b818152846020838601011115610f04578283fd5b816020850160208301379081016020019190915292915050565b805161ffff811681146109e057600080fd5b805160ff811681146109e057600080fd5b60008060008060808587031215610f56578384fd5b8435610f61816113c6565b93506020850135610f71816113c6565b9250604085013591506060850135610f88816113c6565b939692955090935050565b60008060408385031215610fa5578182fd5b823567ffffffffffffffff811115610fbb578283fd5b610fc785828601610ecd565b95602094909401359450505050565b60008060408385031215610fe8578182fd5b505080516020909101519092909150565b60008060006060848603121561100d578283fd5b8335925060208401359150604084013567ffffffffffffffff811115611031578182fd5b61103d86828701610ecd565b9150509250925092565b600060208284031215611058578081fd5b815167ffffffffffffffff81111561106e578182fd5b8201601f8101841361107e578182fd5b805161108c610eeb82611356565b8181528560208385010111156110a0578384fd5b6110b1826020830160208601611396565b95945050505050565b600080600080600080600080610100898b0312156110d6578384fd5b88516110e1816113c6565b8098505060208901518060020b81146110f8578485fd5b965061110660408a01610f1e565b955061111460608a01610f1e565b945061112260808a01610f1e565b935061113060a08a01610f30565b925061113e60c08a01610f30565b915060e08901518015158114611152578182fd5b809150509295985092959890939650565b60008060408385031215611175578182fd5b8251915061118560208401610f1e565b90509250929050565b600081518084526111a6816020860160208601611396565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b7fffffffffffffffffffffffffffffffffffffffff000000000000000000000000606093841b811682529190921b16601482015260280190565b73ffffffffffffffffffffffffffffffffffffffff91909116815260200190565b600073ffffffffffffffffffffffffffffffffffffffff8088168352861515602084015285604084015280851660608401525060a0608083015261127a60a083018461118e565b979650505050505050565b6000602082526108d7602083018461118e565b60208082526010908201527f556e6578706563746564206572726f7200000000000000000000000000000000604082015260600190565b60006040820184835260206040818501528185518084526060860191508287019350845b8181101561131357845161ffff16835293830193918301916001016112f3565b5090979650505050505050565b91825261ffff16602082015260400190565b60405181810167ffffffffffffffff8111828210171561134e57fe5b604052919050565b600067ffffffffffffffff82111561136a57fe5b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b60005b838110156113b1578181015183820152602001611399565b838111156113c0576000848401525b50505050565b73ffffffffffffffffffffffffffffffffffffffff811681146113e857600080fd5b5056fea164736f6c6343000706000a